The Power of Virtual Process Development

Faster solutions, lower cost, workforce development

Richard A. Gottscho, Ph.D.

Executive Vice President, Strategic Advisor to the CEO, Innovation Ecosystem

Why can't we design a process like we design a chip?

SPEC

RECIPE

4 ° '		Searage-Star Librate pe 33		- *
		The second second	1	
PRESSURE	50 m T	тсст	1.5 Vb	I.
TCP POWER	1000 W	STG	5 02	
BIAS VOLTAGE	500 Vb	TESC	1.5	E
AR FLOW	200 sccm	DC	10%	I.
CF4 FLOW	1000 W	FREQUENCY	100 Hz	
O2 FLOW	500 Vb	TIME	90 sec	
ESC T	60 °C	тсст	500 Vb	
and the second sec				and the same of the same

RESULT

Why not just use a *big data* approach?

Simply put, it costs too much and takes too long

Little data world but *big* dimensional space

~ AVOGADRO'S NUMBER OF RECIPES

What about

physics?...

Natural simplifications

TABLE I. Oxygen reaction set.					
	Reaction		Rate coefficients		
$e + O_2$	\longrightarrow	$O_2^+ + 2e$	$k_1 = 9.0 \times 10^{-10} (T_e)^2 \exp(-12.6/T_e) \text{ cm}^3 \text{ s}^{-1}$		
$e + O_2$	\longrightarrow	$O(^{3}P)+O(^{1}D)+e$	$k_2 = 5.0 \times 10^{-8} \exp(-8.4/T_e) \text{ cm}^3 \text{ s}^{-1}$		
$e + O_2$	\longrightarrow	$O(^{3}P) + O^{-}$	$k_3 = 4.6 \times 10^{-11} \exp(2.91/T_e - 1.26/T_e^2 + 6.92/T_e^3) \text{ cm}^3 \text{ s}^{-1}$		
$e + O(^{3}P)$	\longrightarrow	O^++2e	$k_4 = 9.0 \times 10^{-9} (T_e)^{0.7} \exp(-13.6/T_e) \text{ cm}^3 \text{ s}^{-1}$		
$O^{-}+O_{2}^{+}$	\longrightarrow	$O(^{3}P) + O_{2}$	$k_5 = 1.4 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$		
$O^{-}+O^{+}$		$O(^{3}P) + O(^{3}P)$	$k_6 = 2.7 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$		
$e + 0^-$	\longrightarrow	$O(^{3}P)+2e$	$k_7 = 1.73 \times 10^{-7} \exp(-5.67/T_e + 7.3/T_e^2 - 3.48/T_e^3) \text{ cm}^3 \text{ s}^{-1}$		
$e + O_2$	\longrightarrow	$O(^{3}P) + O(^{3}P) + e$	$k_8 = 4.23 \times 10^{-9} \exp(-5.56/T_e) \text{ cm}^3 \text{ s}^{-1}$		
$e + O(^{3}P)$		$O(^{1}D)+e$	$k_9 = 4.47 \times 10^{-9} \exp(-2.286/T_e) \text{ cm}^3 \text{ s}^{-1}$		
$O(^{1}D) + O_{2}$	\longrightarrow	$O(^{3}P) + O_{2}$	$k_{10} = 4.1 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$		
$O(^{1}D) + O(^{3}P)$	\longrightarrow	$O(^{3}P) + O(^{3}P)$	$k_{11}^{10} = 8.1 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$		
	(wall)				
$O(^{1}D)$	\longrightarrow	$O(^{3}P)$	$k_{12} = D_{\text{eff}} / \Lambda^2 \text{s}^{-1}$		
$e + O(^{1}D)$	\longrightarrow	O^++2e	$k_{13} = 9.0 \times 10^{-9} (T_e)^{0.7} \exp(-11.6/T_e) \text{ cm}^3 \text{ s}^{-1}$		
	(wall)				
$O^+(g)$	\longrightarrow	$O(^{3}P)(g)$	$k_{14} = 2 u_{B,O^+} (R^2 h_L + RL h_R) / R^2 L \mathrm{s}^{-1}$		
	(wall)				
$O_2^+(g)$	\longrightarrow	$O_2(g)$	$k_{15} = 2u_{B,O_2^+}(R^2h_L + RLh_R)/R^2L \text{ s}^{-1}$		
$O(\alpha)$	(wall)	$\frac{1}{2}O(\alpha)$	$k = \infty D / \Lambda^2 c^{-1}$		
U(g)	\longrightarrow	$\overline{2}O_2(g)$	$\kappa_{16} = \gamma_{\rm rec} \mathcal{D}_{\rm eff} / \Lambda s$		

Where $Z \equiv$ chemical impedance ~1/keff

LAM RESEARCH Source: Lee and Lieberman, global model, 1994

Exploit little data with right (physics-based) model

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann, as related by Freeman Dyson (2004) "A meeting with Enrico Fermi," Nature 427 (6972)

"All models are wrong, some are useful."

George Box, 1976

Let's play a "game" to benchmark different AI (and human) approaches

A virtual plasma etch process "cousin"

Machine alone was no match for expert engineer

Process engineers

Computer algorithm

Human-machine collaboration yields cost and time savings

Hybrid approach wins

Human-first, machine-last saves countless hours and millions of dollars

algorithm \$739K

EXPERIENCED HUMAN ENGINEER \$105k hf-cl approach \$52k

There is high value learning from virtual worlds that *are not* precisely predictive

.

Virtual Process Development

Transform process development through digitalization, automation, simulation & data analysis

- Process Development is not one monolithic workflow. It is many different paths through a variety of different activities. Catering to these varied workflows requires a holistic strategy.
- The activities largely reside in three disciplines, with specific requirements, and must be connected through enterprise-scale storage of experimental process data.
- Modernizing and automating physical experimental activities in the lab is key to delivering the contextual data to the data store
- Image analysis and flexible platforms for data science, machine learning and advanced analytics are critical for data engineering.
- Connecting platforms and systems to create efficient, friction-free workflows = Virtual Process Development

