
The Power of Virtual 
Process Development
Faster solutions, lower cost, workforce 
development

Richard A. Gottscho, Ph.D.
Executive Vice President, Strategic Advisor to the CEO, Innovation Ecosystem



LAM RESEARCH
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Why can’t we design a process like we design a chip?
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Why not just use a 
big data approach?
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Simply put, 
it costs too 
much and 
takes too long 
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~ AVOGADRO’S NUMBER OF RECIPES

Little data 
world but big 
dimensional 
space
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What about 
physics?...
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Natural simplifications

Where Z ≡ chemical impedance ~1/keff

Zeff ~ Z2 
When Z2 >> Z1

Zeff ~ Z1 
When Z2 >> Z1
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𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑍𝑍1 + 𝑍𝑍2

Source: Lee and Lieberman, global model, 1994
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Exploit little data with right (physics-based) model
MODEL 1 MODEL 2 MODEL 3

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann, as related by Freeman Dyson (2004)
"A meeting with Enrico Fermi,” Nature 427 (6972)
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George Box, 1976

“All models are 
wrong, some 
are useful.”
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Let’s play a “game” to benchmark different 
AI (and human) approaches
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A virtual plasma etch process “cousin”

INCOMING RECIPE              SIMULATOR              OUTPUT TARGET OTHER PROFILES

Pressure
Plasma power1
Plasma power2

Ar flow
Gas 1
Gas 2
Gas 3

Duty cycle
Pulse frequency

Temperature 

Etch depth
Etch rate
Mask remain
Top CD
Delta CD
Bow CD
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Machine alone was no match for expert engineer

Inexperienced humans
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Process engineers

Winner: 
$105,000

Senior engineer #1
Senior engineer #2
Senior engineer #3
Junior engineer #1
Junior engineer #2
Junior engineer #3
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Computer algorithm
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$739,000 

Source: Kanarik et al, Nature, 2023
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Human-machine collaboration yields cost and 
time savings
  

99% success rate

Computer last

Human first

Success rate: % meeting target at lower cost than expert
Source: Kanarik et al, Nature, 2023

Expert trajectory
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Human-first, 
machine-last 
saves countless 
hours and 
millions of dollars

Hybrid approach wins
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$739K

EXPERIENCED 
HUMAN ENGINEER

$105k

HF-CL 
APPROACH

$52k

The results showed 
the hybrid model 

saves time & reduced 
chip development 

costs by 50%
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There is high value 
learning from virtual 
worlds that are not 
precisely predictive
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Virtual Process Development
Transform process development through digitalization, automation, simulation & data analysis

• Process Development is not one monolithic workflow.  
It is many different paths through a variety of different 
activities.  Catering to these varied workflows requires 
a holistic strategy.

• The activities largely reside in three disciplines, with 
specific requirements, and must be connected through 
enterprise-scale storage of experimental process data.

• Modernizing and automating physical experimental 
activities in the lab is key to delivering the contextual 
data to the data store

• Image analysis and flexible platforms for data science, 
machine learning and advanced analytics are critical 
for data engineering.

• Connecting platforms and systems to create efficient, 
friction-free workflows = Virtual Process Development

Experimental 
Planning & 
Execution

Data 
Engineering

Data Analysis & 
Experimental 
Design

Assign 
recipes/tools 
to samples

Choose 
metrology to 
use

Execute  
experiment 
in the lab

Execute 
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Assemble 
Starting 
Materials 

Configure 
Lab 
Hardware

Link the 
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measurements 
from images

Transformation 
of Sensor Data

Data 
cleaning/ 
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Data entry 
(manual/ 
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Advanced/ 
Statistical 
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Model 
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Model 
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Data 
visualization

Query/ 
filter 
data

Derived 
measurements

Create 
Experimental 
Design

Use 
models to 
predict

Use 
models to 
explore

Create 
Process 
Strategy 

Enterprise  
Lab Data 
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