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Tools of the Trade
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application driven platforms / software

Need for a full stack approach



Technology impact might not be 

observable or significant in a specific 

architecture, but extremely important in 

another.

Technology: What, When, 

Where?



To translate technology improvements to 

workload performance, a HW-SW 

codesign methodology is needed.



▪ AI will continue to set the pace in demand for compute efficiency

AI Training Compute Demands
10X/year!

Specific Workloads will Drive Demand for Computing and 
Devices

NLP model growth

5000x increase in 4 
years!

Source: NVIDIA
Source: The Economist, OpenAI

AI Hardware Landscape



AI Hardware: Goals, Current Landscape

How’s it done today?

➢ AI is powered by GPUs, 

TPUs/NPUs

➢ Most of the improvements 

are from data-parallel 

architectures, specialization 

and high-bandwidth memory

Need for radically 

different approach: 

beyond von-Neuman 

based hardware

TPU, NPU

Sensor-to-Decision Latency
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DoD Edge AI needs 
(autonomous vehicles, 

target recognition, 

threat monitoring, 

wearable sensors, …) 

General Purpose

Innovation vectors (examples)
1. Fusing statistical and neuro-inspired models 
2. Extreme integration with sensors
3. CMOS+X hardware fabrics
4. Compute-in-memory fabrics



Why co-design is pivotal for AI hardware?

Data-intensive AI workloads Enormous energy/performance overheads in 
traditional von-Neumann architectures 

Solution: 
Computing-in-

Memory (CiM) of 
Matrix Vector 

Multiplications

Additional design conflicts/complexities due to CiM
• Larger range of CiM output currents (than simple 

read) →More non-idealities
• Need for complex peripheral circuits

Technology scaling to support high data 
storage and energy/performance 

demands of AI hardware

Aggravation of Technology 
Non-Idealities

• Wire resistivity/resistance
• Process variations

Computational Errors, Energy Inefficiencies, Latency Increase !!

Need a technology-circuit-architecture-algorithm co-
design solutions to tackle the increase in challenges



Major Compute Requirement: MMMs
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Chakraborty et. al, Resistive Crossbars…: 

Opportunities and Challenges, Proc. IEEE, 2020

The Peripherals

In-Memory Computing Devices 

NoC Architecture

Efficient MVM Unit

High Density off-
chip memory
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Hardware Architecture 

Tile 

0
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Tile 
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PUMA: A Programmable Ultra-efficient Memristor-

based Accelerator for Machine Learning Inference

Ankit et. al, PUMA:…, ASPLOS 2019



AI Hardware Design: Intricate Cross-Layer 
Interactions

SOT-MRAM

FEFET

ReRAM

Technologies

X-bar MVM Unit In-Memory Compute Macro

Hardware Architecture

DNN Architectures

SRAM

Need to consider the cross-
layer optimization techniques 
to capture the effects of such 

interactions

Tech. Metrics
# states, RON , 

ROFF,  footprint, 
endurance

X-bar Metrics
Array size, 

#bits/device…

Macro Metrics
ADC precision,
row activation,
data encoding…

Arch. Metrics
Data mapping, 

memory hierarchy, 
data flow



Example: Spin-based Deep Neural 
Networks

Device Design

• Read-Write Path 
Separation

• tMgO Optimization

Algorithmic Sparsity

Lower number of 
activated row → Less 

impact of ‘false’ ON states

Synergize to reduce 
computational errors

𝑵𝑭 =
𝑰𝑰𝒅𝒆𝒂𝒍 − 𝑰𝑵𝒐𝒏−𝑰𝒅𝒆𝒂𝒍

𝑰𝑰𝒅𝒆𝒂𝒍

RON optimization to reduce NF Algorithm design to reduce NF

Algorithm-hardware co-design to 
enhance system accuracy

Low distinguishability

T. Sharma, K. Roy et al, ISLPED 2021



Cross-layer flow for System-Technology Co-Design

Neuro-symbolic AI, Probabilistic Algorithms, Human Machine Systems …..

Physical Models
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Technology Exploration/Selection 

20

He, Roy et al, ICCAD 

2022



SRAM, STT/SOT-MRAM, Flash, FeFET, IGZO, 

PCM

21

imec-PU AI 

system 

exploration

Application and algorithm optimization

Low-precision neural network exploration

System architecture exploration

Digital hardware acceleration

Use/drive emerging technologies

Compute-in-Memory (CiM)

macro using emerging memories

LLM,  

neuromorphic exploratory algorithm

CiM accelerator component, middleware for 

accelerator integration in the system
1T1R, 2T1R, 2T1C, 2T0C cells for CiM

macro

HW-SW Codesign for  future AI compute systems



THANK YOU!  


