Support

Support Options

Submit a Support Ticket

 

Citations

Reference Type
Author Geography
Author Affiliation

Export Multiple Citations

Check the citations that you would like to have exported.

|
Search Citations
Citations
0. A. Rahman, Jihua Guo, S. Datta, Mark Lundstrom, (2003), "Theory of ballistic nanotransistors", Electron Devices, IEEE, IEEE, 50, 9: pg: 1853-1864, 09, (DOI: 10.1109/TED.2003.815366). Cited by: 463
BibTex | EndNote| Resources cited: [1], [2]|Electronic Paper
1. I. Foster, (2005), "Service-Oriented Science", Science, American Association for the Advancement of Science, 308, 5723: pg: 814-817, 05, (DOI: 10.1126/science.1110411). Cited by: 449
BibTex | EndNote|Electronic Paper
2. Mark Lundstrom, X. Ren, (2002), "Essential physics of carrier transport in nanoscale MOSFETs", Electron Devices, IEEE, IEEE, 49, 1: pg: 133-141, 01, (DOI: 10.1109/16.974760). Cited by: 422
BibTex | EndNote| Resources cited: [1], [2]|Electronic Paper
3. Youngki Yoon, Kartik Ganapathi, Sayeef Salahuddin, (2011), "How Good Can Monolayer MoS2 Transistors Be?", Nano Letters, ACS Publications, 11, 9: pg: 3768-3773, (DOI: 10.1021/nl2018178). Cited by: 270
BibTex | EndNote | Resources cited
4. S. Adabala, V. Chadha, Puneet Chawla, R.J. Figueiredo, J.A.B. Fortes, Ivan Krsul, A. Matsunaga, M. Tsugawa, Jian Zhang, M. Zhao, L. Zhu, Xiaomin Zhu, (2004), "From virtualized resources to virtual computing grids: the In-VIGO system", Future Generation Computer Systems, Elsevier, 21, 6: pg: 896-909, 02, (DOI: 10.1016/j.future.2003.12.021). Cited by: 261
BibTex | EndNote| Resources cited: [1]
5. Z. Ren, R. Venugopal, Sebastian Goasguen, S. Datta, Mark Lundstrom, (2003), "nanoMOS 2.5: A two-dimensional simulator for quantum transport in double-gate MOSFETs", IEEE Transactions on Electron Devices, IEEE, 50, 9: pg: 1914-1925, 09, 0018-9383, (DOI: 10.1109/TED.2003.816524). Cited by: 231
BibTex | EndNote | Resources cited|Electronic Paper
6. G.P. Lansbergen, Rahib Rahman, Cameron Wellard, J. Caro, N. Collaert, S. Biesemans, Insoo Woo, G Klimeck, Lloyd Hollenberg, Sven Rogge, (2008), "Gate induced quantum confinement transition of a single dopant atom in a Si FinFET", Nature Physics, Nature Publishing Group, 4, 8: pg: 656-661, 06, (DOI: 10.1038/nphys994). Cited by: 225
BibTex | EndNote| Resources cited: [1]
7. E. Pop, Sanjiv Sinha, K.E. Goodson, (2006), "Heat Generation and Transport in nanometer-scale Transistors", Proceedings Of The IEEE, IEEE, 94, 8: pg: 1587-1601, 08, 0018-9219, (DOI: 10.1109/JPROC.2006.879794). Cited by: 219
BibTex | EndNote|Electronic Paper
8. S. Datta, (2004), "Electrical resistance: an atomistic view", IOP Electronic Journals, Nanotechnology, IOP Publishing, 15, 7: pg: S433-S451, 07, S433-S451, (DOI: 10.1088/0957-4484/15/7/051). Cited by: 202
BibTex | EndNote | Resources cited|Electronic Paper
9. Mathieu Lusier, Andreas Schenk, Wolfgang Fichtner, G Klimeck, (2006), "Atomistic Simulation of Nanowires in the sp3d5s* Tight-Binding Formalism: from Boundary Conditions to Strain Calculations", PHYSICAL REVIEW B, APS, 74, 20: pg: 205323-1-205323-12, 11, (DOI: 10.1103/PhysRevB.74.205323). Cited by: 189
BibTex | EndNote | Resources cited
10. Keunwoo Kim, Jerry Fossum, (2001), "Double-Gate CMOS: Symmetrical- Versus Asymmetrical-Gate Devices", Electron Devices, IEEE, IEEE, 48, 2: pg: 294-299, 02, 0018-9383, (DOI: 10.1109/16.902730). Cited by: 182
BibTex | EndNote | Resources cited|Electronic Paper
11. P. Ruth, J. Rhee, D. Xu, Rick Kennell, Sebastian Goasguen, (2006), "Autonomic Live Adaptation of Virtual Computational Environments in a Multi-Domain Infrastructure", NA, Autonomic Computing, 2006. ICAC'06. IEEE International Conference on: pg: 5-14, IEEE, 06, 1-4244-0175-5, (DOI: 10.1109/ICAC.2006.1662376 ). Cited by: 174
BibTex | EndNote| Resources cited: |Electronic Paper
12. Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy, Paul Avery, Kent Blackburn, Torre Wenaus, Frank Würthwien, I. Foster, Rob Gardner, Alan Blatecky, John McGee, Rob Quick, (2007), "The Open Science Grid", Journal Of Physics: Conference Series, Journal of Physics: Conference Series, 78, 1: pg: 1-15, IOP Publishing, 06, (DOI: 10.1088/1742-6596/78/1/012057). Cited by: 170
BibTex | EndNote | Resources cited|Electronic Paper
13. S.V. Kumar, C.H. Kim, S.S. Sapatnekar, (2006), "An Analytical Model for Negative Bias Temperature Instability", 2006 International Conference On Computer-aided Design, 2006 International Conference on Computer-Aided Design, San Jose, CA: pg: 493-496, IEEE, San Jose, CA, 11, 1092-3152, 1-59593-389-1, (DOI: 10.1109/ICCAD.2006.320163). Cited by: 158
BibTex | EndNote | Resources cited|Electronic Paper
14. A. Raychowdhury, Saibal Mukhopadhyay, K. Roy, (2004), "A circuit-compatible model of ballistic carbon nanotube field-effect transistors", Computer-aided Design Of Integrated Circuits And Systems, Ieee Transactions On, IEEE, 23, 10: pg: 1411-1420, 10, 0278-0070, (DOI: 10.1109/TCAD.2004.835135). Cited by: 157
BibTex | EndNote | Resources cited|Electronic Paper
15. M. Paulsson, S. Datta, (2003), "Thermoelectric effect in molecular electronics", PHYSICAL REVIEW B, APS, 67, 24: pg: 241403-1-241403-4, 06, 1098-0121, (DOI: 10.1103/PhysRevB.67.241403). Cited by: 139
BibTex | EndNote| Resources cited: [1], [2], [3]
16. G Klimeck, Shaikh Ahmed, Hansang Bae, Neerav Kharche, Rahib Rahman, Steven Clark, B.P. Haley, Sunhee Lee, Maxim Naumov, Hoon Ryu, Faisal Saied, M Prada, M. Korkusinski, Timothy Boykin, (2007), "Atomistic Simulation of Realistically Sized Nanodevices Using NEMO 3-D - Part I: Models and benchmarks", Electron Devices, IEEE, IEEE, 54, 9: pg: 2079-2089, 09, 0018-9383, (DOI: 10.1109/TED.2007.902879). Cited by: 139
BibTex | EndNote| Resources cited: [1], [2]|Electronic Paper
17. P. Ruth, P. McGachey, D. Xu, (2005), "VioCluster: Virtualization for Dynamic Computational Domains", IEEE International Conference On Cluster Computing, Cluster Computing, 2005. IEEE International: pg: 38361-, IEEE, 09, 0-7803-9486-0/1552-5244, (DOI: 10.1109/CLUSTR.2005.347064). Cited by: 132
BibTex | EndNote| Resources cited: |Electronic Paper
18. Jian Wang, A. Rahman, Avik Ghosh, G Klimeck, Mark Lundstrom, (2005), "On the validity of the parabolic effective-mass approximation for the I-V calculation of silicon nanowire transistors", IEEE Transactions on Electron Devices, IEEE, 52, 7: pg: 1589-1595, 07, 1557-9646, (DOI: 10.1109/TED.2005.850945). Cited by: 130
BibTex | EndNote| Resources cited: [1], [2]|Electronic Paper
19. Gengchiau Liang, Jie Xiang, Neerav Kharche, G Klimeck, Charles Lieber, Mark Lundstrom, (2007), "Performance Analysis of a Ge/Si Core/Shell Nanowire Field-Effect Transistor", Nano Letters, ACS Publications, 7, 3: pg: 642-646, 02, (DOI: 10.1021/nl062596f). Cited by: 125
BibTex | EndNote| Resources cited: [1], [2]
20. N. Neophytou, Abhijeet Paul, Mark Lundstrom, G Klimeck, (2008), "Bandstructure Effects in Silicon Nanowire Electron Transport", Electron Devices, IEEE, IEEE, 55, 6: pg: 1286-1297, 06, (DOI: 10.1109/TED.2008.920233). Cited by: 122
BibTex | EndNote | Resources cited|Electronic Paper
21. Raseong Kim, S. Datta, Mark Lundstrom, (2009), "Influence of dimensionality on thermoelectric device performance", Journal of Applied Science, AIP, 105, 3: pg: 034506-1-034506-6, 02, (DOI: 10.1063/1.3074347). Cited by: 122
BibTex | EndNote | Resources cited
22. V. Trivedi, Jerry Fossum, (2005), "Quantum-mechanical effects of the threshold voltage of undoped double-gate MOSFETs", Electron Device Letters, IEEE, IEEE, 26, 8: pg: 579-582, 08, 0741-3106 (DOI: 10.1109/LED.2005.852741). Cited by: 121
BibTex | EndNote | Resources cited|Electronic Paper
23. Nancy Wilkins-Diehr, D.B. Gannon, G Klimeck, Scott Oster, Sudhakar Pamdighantam, (2008), "TeraGrid Science Gateways and Their Impact on Science", Computer, IEEE, 41, 11: pg: 32-41, 11, (DOI: 10.1109/MC.2008.470). Cited by: 119
BibTex | EndNote| Resources cited: [1], [2], [3]
24. Wenping Wang, Shengqi Yang, Sarvesh Bhardwaj, Sarma Vrudhula, Frank Liu, Yu Cao, (2010), "The Impact of NBTI Effect on Combinational Circuit: Modeling, Simulation, and Analysis", IEEE Transactions on Very Large Scale Integration \VLSI) Systems, IEEE, 18, 2: pg: 173-183, 01, 1063-8210, (DOI: 10.1109/TVLSI.2008.2008810). Cited by: 111
BibTex | EndNote | Resources cited
25. Ian O'Connor, Junchen Liu, Frédéric Gaffiot, Fabien Prégaldiny, Christophe Lallement, Cristell Maneux, Johnny Goguet, Sebastien Frégonese, Thomas Zimmer, Lorena Anghel, Tong-Trinh Dang, Régis Leveugle, (2007), "CNTFET Modeling and Reconfigurable Logic-Circuit Design", IEEE Transactions On Circuits And Systems--i: Regular Papers, IEEE, 54, 11: pg: 2365-2379, 11, 1549-8328, (DOI: 10.1109/TCSI.2007.907835). Cited by: 110
BibTex | EndNote| Resources cited: [1], [2]|Electronic Paper
26. Arvind Raman, John Melcher, Ryan Tung, (2008), "Cantilever Dynamics in Atomic Force Microscopy", Nanotoday, Elsevier, 3, 1: pg: 20-27, 02, (DOI: 10.1016/S1748-0132\08)70012-4). Cited by: 107
BibTex | EndNote| Resources cited: [1], [2]
27. G Klimeck, M. McLennan, Sean Brophy, George Adams, Mark Lundstrom, (2008), "nanoHUB.org: Advancing Education and Research in Nanotechnology", IEEE Computers In Engineering And Science, IEEE, 10, 5: pg: 17-23, 09, (DOI: 10.1109/MCSE.2008.120). Cited by: 105
BibTex | EndNote | Resources cited
28. D.A. Antoniadis, Ingvar Aberg, C. Ni Chleirigh, O. Nayfeh, A. Khakifirooz, Judy Hoyt, (2006), "Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations", IBM Journal Of Research And Development, IBM, 50, 4: pg: 363-376, 07, 0018-8646, Cited by: 105
BibTex | EndNote | Resources cited|Electronic Paper
29. A. Rahman, Mark Lundstrom, Avik Ghosh, (2005), "Generalized effective-mass approach for n-type metal-oxide-semiconductor field-effect transistors on arbitrarily oriented wafers", Journal of Applied Physics, AIP, 97, 5: pg: 0-0, 02, (DOI: 10.1063/1.1845586). Cited by: 102
BibTex | EndNote | Resources cited
30. Li Fan, Jian Wang, Leo Varghese, H. Shen, B. Niu, Yi Xuan, A.M. Weiner, M. Qi, (2012), "An All-Silicon Passive Optical Diode", Science, American Association for the Advancement of Science, 335, 6067: pg: 447-450, (DOI: 10.1126/science.1214383). Cited by: 98
BibTex | EndNote | Resources cited
31. M. McLennan, Rick Kennell, (2010), "HUBzero: A Platform for Dissemination and Collaboration in Computational Science and Engineering", Computing in Science & Engineering , IEEE, 12, 2: pg: 48-53, 03, (DOI: 10.1109/MCSE.2010.41). Cited by: 95
BibTex | EndNote
32. Jing Guo, S. Datta, Mark Lundstrom, Markus Brink, Paul McEuen, Ali Javey, Hongjie Dai, Hyoungsub Kim, Paul McIntyre, (2002), "Assessment of Silicon MOS and Carbon Nanotube FET Performance Limits Using a General Theory of Ballistic Transistors", IEEE IEDM, Electron Devices Meeting, 2002. IEDM'02. Digest. International: pg: 711-714, IEEE, 12, Cited by: 93
BibTex | EndNote | Resources cited|Electronic Paper
33. F. Zahid, M. Paulsson, S. Datta, (2003), "Electrical Conduction through Molecules", Advanced Semiconductors and Organic Nano-Techniques, Advanced Semiconductors and Organic Nano-Techniques, Academic Press: pg: 2-41, 07, Cited by: 91
BibTex | EndNote
34. Siyuranga Koswatta, S. Hasan, Mark Lundstrom, M.P. Anantram, Dmitri Nikonov, (2007), "Non-equilibrium Green's function treatment of phonon scattering in carbon-nanotube transistors", IEEE Transactions on Electron Devices, IEEE, 54, 9: pg: 2339-2351, 08, (DOI: 10.1109/TED.2007.902900). Cited by: 91
BibTex | EndNote| Resources cited: [1]|Electronic Paper
35. John Melcher, Shuiqing Hu, Arvind Raman, (2007), "Equivalent Point-Mass Models of Continuous Atomic Force Microscope Probes", Applied Physics Letters, American Institute of Physics, 91, 5: pg: -, 07, (DOI: 10.1063/1.2767173). Cited by: 91
BibTex | EndNote | Resources cited|Electronic Paper
36. Kerry Bernstein, Ralph Cavin, Wolfgang Porod, Alan Seabaugh, Jeff Welser, (2010), "Device and Architecture Outlook for Beyond CMOS Switches", Proceedings Of The IEEE, IEEE, 98, 12: pg: 2169-2184, 10, 0018-9219, (DOI: 10.1109/JPROC.2010.2066530). Cited by: 89
BibTex | EndNote
37. Mathieu Lusier, Andreas Schenk, W. Fichtner, (2006), "Quantum transport in two- and three-dimensional nanoscale transistors: Coupled mode effects in the nonequilibrium Green's function formalism", Journal of Applied Physics, AIP, 100, 4: pg: 043713-1-043713-12 08, (DOI: 10.1063/1.2244522). Cited by: 88
BibTex | EndNote|Electronic Paper
38. S. O'Leary, Brian Foutz, Michael Shur, Lester Eastman, (2006), "Steady-State and Transient Electron Transport Within the III-V Nitride Semiconductors, GaN, AlN, and InN: A Review", Journal Of Materials Science: Materials In Electronics, Springer, 17, 2: pg: 87-126, 02, (DOI: 10.1007/s10854-006-5624-2). Cited by: 88
BibTex | EndNote | Resources cited
39. L. Chang, K.J. Yang, Yee-Chia Yeo, I. Polishchuk, Tsu-Jae King, Chenming Hu, (2002), "Direct-tunneling gate leakage current in double-gate and ultrathin body MOSFETs", IEEE Transactions on Electron Devices, IEEE, 49, 12: pg: 2288-2295, 12, (DOI: 0.1109/TED.2002.807446). Cited by: 86
BibTex | EndNote | Resources cited
40. Mathieu Lusier, G Klimeck, (2009), "Atomistic, Full-Band Design Study of InAs Band-to-Band Tunnelling Field-Effect Transistors", Electron Device Letters, IEEE, 30, 6: pg: 602-604, 05, (DOI: 10.1109/LED.2009.2020442). Cited by: 84
BibTex | EndNote | Resources cited
41. Jerry Fossum, Lixin Ge, M.-H. Chiang, V. Trivedi, M. Chowdhury, L. Mathew, G. Workman, B.-Y. Nguyen, (2004), "A process/physics-based compact model for nonclassical SMOS device and circuit design", Solid-State Electronics, Elsevier, 48, 6: pg: 919-926, 06, (DOI: 10.1016/J.sse.2003.12.030). Cited by: 83
BibTex | EndNote | Resources cited|Electronic Paper
42. Rahib Rahman, Cameron Wellard, Forrest Bradbury, M Prada, Jared Cole, G Klimeck, Lloyd Hollenberg, (2007), "High Precision Quantum Control of Single Donor Spins in Silicon", Physical Review Letters, APS, 99, 3: pg: -, 07, (DOI: 10.1103/PhysRevLett.99.036403). Cited by: 81
BibTex | EndNote | Resources cited|Electronic Paper
43. Mihail Roco, Chad Mirkin, Mark Hersam, (2010), "Nanotechnology Research Directions For Societal Needs In 2020: Retrospective And Outlook", Springer Verlag, 1: pg: -, Cited by: 80
BibTex | EndNote
44. D Jimenez, J. Saenz, B Iniquez, J. Sune, L.F. Marsal, J. Pallares, (2009), "Unified compact model for the ballistic quantum wire and quantum well metal-oxide-semiconductor field-effect-transistor", Journal of Applied Physics, AIP Publishing, 94, 2: pg: 1061-1068, 01, (DOI: 10.1063/1.1582557). Cited by: 78
BibTex | EndNote | Resources cited
45. G Klimeck, Shaikh Ahmed, Neerav Kharche, M Prada, M. Korkusinski, Timothy Boykin, Muhammad Usman, (2007), "Atomistic Simulation of Realistically Sized Nanodevices Using NEMO 3-D - Part II: Applications", Electron Devices, IEEE, IEEE, 54, 9: pg: 2090-2099, 09, 0018-9383, (DOI: 10.1109/TED.2007.904877). Cited by: 73
BibTex | EndNote| Resources cited: [1], [2], [3]|Electronic Paper
46. Wanqiang Chen, Mark Thoreson, Satoshi Ishii, Alexander Kildishev, VM Shalaev, (2010), "Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer", Optics Express, Optical Society of America, 18, 5: pg: 5124-5134, 02, 5124-34, Cited by: 72
BibTex | EndNote| Resources cited: [1], [2]
47. Aditya Johri, Barbara Olds, (2011), "Situated Engineering Learning: Bridging Engineering Education Research and the Learning Sciences", Journal Of Engineering Education, Kansai University Press, 100, 1: pg: 151-185, 01, 1069-4730, Cited by: 72
BibTex | EndNote
48. A. Ritenour, A. Khakifirooz, D.A. Antoniadis, R.Z. Lei, W. Tsai, A. Dimoulas, G. Mavrou, Y. Panayiotatos, (2006), "Subnanometer-equivalent-oxide-thickness germanium p-metal-oxide-semiconductor field effect transistors fabricated using molecular-beam-deposited high-k/metal gate stack", Applied Physics Letters, AIP, 88, 32767: pg: 132107-1-132107-3, 03, Cited by: 70
BibTex | EndNote | Resources cited
49. Massimo Alioto, (2010), "Understanding DC Behavior of Subthreshold CMOS Logic Through Closed-Form Analysis", IEEE Transactions On Circuits And Systems--i: Regular Papers, IEEE, 57, 7: pg: 1597-1607, 01, 1549-8328, (DOI: 10.1109/TCSI.2009.2034233). Cited by: 70
BibTex | EndNote | Resources cited

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.