Collections

The goal of this short course is to provide an introduction to the theory and algorithms behind MD simulations, describe some of the most exciting recent developments in the field and exemplify with a few applications applications. The series also includes a tutorial on the nanoMATERIALS simulation tool, an online MD simulation tool available at the nanoHUB. This provides users with a hands-on experience with MD simulations and enables further exploration of some of the concepts described in the lectures.

64 reposts

Profile picture of Fernanda Teixeira 1stNanda

Fernanda Teixeira 1stNanda onto Molecular Dynamics

DFT calculations of materials

16 reposts

Profile picture of Zhen Wang

Zhen Wang onto My Tools

Learn the underlying engineering principles used to detect small molecules, DNA, proteins, and cells in the context of applications in diagnostic testing, pharmaceutical research, and environmental monitoring. Biosensor approaches including electrochemistry, fluorescence, acoustics, and optics will be taught. The course also teaches aspects of selective surface chemistry, including methods for biomolecule attachment to transducer surfaces. Students will learn how biosensor performance is …

25 reposts

Profile picture of naitbouda abdelyamine

naitbouda abdelyamine onto raman

Use the HUBzero framework to bring your simulation/model and analysis tools online

4 reposts

Profile picture of Shaikh S. Ahmed

Shaikh S. Ahmed onto Rappturization

This nanotechnology course explains the fundamentals of nanoelectronics and mesoscopic physics.

Second in a two part series, this nanotechnology course provides an introduction to more advanced…

36 reposts

Profile picture of Lynn Gross

Lynn Gross onto Data

k

44 reposts

Profile picture of Ibrahim Dz

Ibrahim Dz onto k:

Simulate Electron transport in Single-walled carbon nanotubes using an upwinding discretization of the Boltzmann transport equation in the relaxation time approximation.

12 reposts

Profile picture of Mohamed Abd AlEnizi

Mohamed Abd AlEnizi onto n

A five-week course on the basic physics that govern materials at atomic scales.

62 reposts

Profile picture of Chaitanya Sagar

Chaitanya Sagar onto Materials Engineering

Nanomaterial Registry data explorer

When asked, "can we provide a different kind of navigation scheme for Nano EHS data?" The IDENT explorer is what we came up with.  Give it a try.

1 reposts

Profile picture of Tanya Faltens

Tanya Faltens onto How to do more on nanoHUB

Scanning Probe Microscopes and their remarkable ability to provide three-dimensional maps of surfaces at the nanometer length scale have arguably been the most important tool in establishing the world-wide emergence of Nanotechnology. In this talk, the fundamental ideas behind the first scanning probe microscope – the Scanning Tunneling Microscope (STM) – will be reviewed. By controlling quantum mechanical electron tunneling, an exquisitely sensitive probe can be built to measure height variations above a surface at the picometer (10 -12 m) level. Some of the historically important problems solved by STMs will be discussed and a few of the important design principles required to build an STM will also be outlined.

7 reposts

Profile picture of Elton Graugnard

Elton Graugnard onto SPM

Educational

11 reposts

Profile picture of Ivan C R nascimento

Ivan C R nascimento onto HDL

HDL and netlist processing

2 reposts

Profile picture of Ivan C R nascimento

Ivan C R nascimento onto HDL

Basic Concepts presents key concepts in nanoelectronics and mesoscopic physics and relates them to the traditional view of electron flow in solids.

67 reposts

Profile picture of Quang Tuan Duong

Quang Tuan Duong onto NanoScience

Learn the underlying engineering principles used to detect small molecules, DNA, proteins, and cells in the context of applications in diagnostic testing, pharmaceutical research, and environmental monitoring. Biosensor approaches including electrochemistry, fluorescence, acoustics, and optics will be taught. The course also teaches aspects of selective surface chemistry, including methods for biomolecule attachment to transducer surfaces. Students will learn how biosensor performance is …

25 reposts

Profile picture of N.Alper TAPAN

N.Alper TAPAN onto biosensors

Nanoelectronics - AFM, STM, SEM, TEM, SPM, XPS

55 reposts

Profile picture of Billie Copley

Billie Copley onto Nano Tools

2D Stick

3 reposts

Profile picture of Zhizhen Ma

Zhizhen Ma onto AgNW Theory

By completing the OMEN Nanowire Lab, users will be able to understand a) the operation of nanowire FETs, b) the effect of bandstructure on the carrier transport in nanowire FETs, and c) the effect of geometry of nanowire on the drain current characteristics in nanowire FETs The specific objectives of the OMEN Nanowire Lab are:


Recommended Reading

Users who are new to the concept of nanowire FETs and the simulation methods that are useful for understanding their characteristics should consult the following resources: Mark Lundstrom, Nanoscale Transistors for a basic understanding on MOS transistors. Joerg Appenzeller, What Promises do Nanotubes and Nanowires Hold for Future Nanoelectronics Applications? One-dimensional Materials Monica Taba, Investigation of the Electrical Characteristics of Triple-Gate FinFETs and Silicon-Nanowire FETs Mark Lundstrom and Jing Guo. (2009). Nanoscale Transistors: Device Physics, Modeling and Simulation. New York: Springer. (See especially chapter 5) Saumitra R. Mehrotra, et al., Threshold voltage Mark Lundstrom, Subthreshold conduction Demo Video Demo First Time User Guide Supporting Document – Limitation of the Tool at Large Gate Voltage Theoretical Descriptions Mathieu Luisier, et al., Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations, Physical Review B 74, 205323, 2006 Mathieu Luisier, Quantum transport beyond the effective mass approximation, ph.D. thesis, ETH, 2007 Mathieu Luisier, Quantum Transport for Nanostructures Dragica Vasileska, et al., Tight-Binding Bandstructure Calculation Method Tool Verification Benchmarking Top-of-the-Barrier Model by Abhijeet et al. Examples First time user guide slide 15-18 Homework OMEN Nanowire Homework Problems Solutions to Exercises Solutions to exercises are provided only to instructors! Evaluation OMEN Nanowire Test Problems Challenge

Users are challenged to integrate what they have learned about OMEN Nanowire Lab in the following module: solve the challenge

1 reposts

Profile picture of Zhizhen Ma

Zhizhen Ma onto AgNW Theory

Experiments with the Bubble Model of a Metal Structure

This video discusses crystal defects (voids, dislocations, stress concentrations) on a closed packed plane using a bubble model described in the 1947 paper in the Proceedings of the Royal Society of London. http://www.jstor.org/stable/97997

Thanks to Professor Jennifer Carter for sharing!

1 reposts