Lecture: P1_Wk4_L6 Lateral Force Microscopy (LFM)

Ron Reifenberger Birck Nanotechnology Center Purdue University 2012

Lateral Force Microscopy

Measure the twist of the cantilever as it scans

What influences friction at the nanoscale?

- Maximize twist: use long cantilevers with a small thickness having long tips
- Forward and backward scans will be different
- Calibration more difficult than for the normal force signal

Twisting a Cantilever

P1_Wk4_L6

Spring Constants for Lateral Force

Comparing Spring Constants

For homogeneous **rectangular cantilever** of length L, width w, thickness t, and having a tip height $H=h+R_{tip}$, the lateral spring constant is given by

$$k_{x} = \frac{Gwt^{3}}{3LH^{2}}$$

where G is the shear modulus of the cantilever material.

Recall, the spring constant of the cantilever when a normal force is applied is given by

$$k = \frac{Ewt^3}{4L^3}$$

The ratio of the spring constants is therefore given by

$$\frac{k_{x}}{k} = \frac{4G}{3E} \left(\frac{L}{H}\right)^{2}$$

Assuming a perfectly <u>isotropic and homogenous material</u>, G is related to E by

$$G = \frac{E}{2(1 + v)}$$

giving

P1_Wk4_L6

M. Munz , J. Phys. D: Appl. Phys. 43, 063001 (2010).

Two Issues in Lateral Force Microscopy

- 1. Calibrating the lateral spring constant of the cantilever
- 2. Calibrating the lateral sensitivity of the photodiode

graphic courtesy of J. Gomez-Herraro

How does the PSD respond as a function of torsional deformation?

Maybe same response as for normal displacements?

If the shape of the reflected laser spot is asymmetric, the torsional response will **not** be the same as the normal response.

Accounting for All the Forces

Uncalibrated Frictional Force Maps

Different frictional forces when tip is scanning over HOPG and flakes of deposited oxidized graphene (OG).

D. Pandey et al., Surface Science 602 1607 (2008).

P1_Wk4_L6

The lateral forces can be large

SEM image showing the result of AFM scanning of an InP surface covered with nm-sized Ag aerosol particles. The AFM probe has cleaned the two scanned areas of particles.

T. Junno, et al., Appl. Phys. Lett. 66, 3295 (1995).

How to Generate a Known Lateral Force?

M. Munz, J. Phys. D: Appl. Phys. 43, 063001 (2010).

Calibration relies on many assumptions

The Friction Loop

Friction Loops on Sloped Surfaces

P1_Wk4_L6 Ogletree et al., Rev. Sci. Instrum. 67 (1996),

Alignment of photodiode is important

Atomic scale friction: Stick/Slip

For a preset loading force $F_n = N$

First observation of atomic-scale stick-slip behavior: C.M. Mate et al., Phys. Rev. Lett. **59**, 1942 (1987).

Up Next: Week 5 - VEDA Simulations

Appendix

Silicon elastic moduli often required in many calculations. For polycrystalline structures:

- Young's modulus, E=1.60 x10¹¹ N/m² =160 GPa
- Poisson's ratio, v=0.22
- mass density, ρ = 2330 kg/m³
- Shear modulus, G=0.65 x10¹¹ N/m² =65 Gpa

But it's more complicated (it always is)! Check out M.A. Hopcroft, D. Nix and T.W. Kenny, J. Microelectromechan. Systems **19**, 229 (2010).

