The Materials Science of Rechargeable Batteries

HW #5

1. Using the reaction zone model, at what porosity, ϵ , does a classic porous electrode of thickness h_c , maximizes the delivered energy?

(a) $\epsilon^* = 1/5$ (b) (b) $\epsilon^* = 3/5$ (c) $\epsilon^* = 1/2$ (d) $\epsilon^* = 1$ (e) $\epsilon^* = 1/3$

2. Using the reaction zone model, at what electrode thickness does a classic porous electrode of maximizes the delivered energy?

(a)
$$h_c^* = \kappa_s U$$

(b) $h_c^* = \epsilon^3 (\kappa_s - h_s i)/i$
(c) $h_c^* = \epsilon \kappa_s U$
(d) $h_c^* = \epsilon^3 (\kappa_s - h_s i)/i$
(e) $h_c^* = \epsilon^{3/2} (\kappa_s U - h_s i)/i$

3. Which of the following is not a valid assumption in the Reaction Zone Model?

- (a) All the current density is converted into a reacted charge.
- (b) Ohmic limitations are included.
- (c) Diffusion limitations are included.
- (d) Porosity is uniformly distributed throughout the electrode.
- (e) The equilibrium potential is state of charge independent.

- 4. Which of the following is not a valid assumption in Porous Electrode Theory?
 - (a) Particles of active material are perfectly spherical.
 - (b) Ohmic limitations are included.
 - (c) Phase transformations inside the particles of active material are included.
 - (d) Diffusion limitations are included.
 - (e) Transport properties are uniformly distributed.