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Background: From a MOSFET to a biosensor
Biocharges, salt and screening
Debye theory response of a planar sensor

Response of planar sensors at high salt
concentration: Gouy-Chapman theory
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Appendix: Derivation of Gouy-Chapman
theory



Sensitivity of a MOSFET-based
potentiometric sensor
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DNA binding and Salt screening
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Salt and screening

Salt is ionized in water.
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How does a lon-sensitive Field Effect
Transistor work (accumulation)

DNA, Protein, etc.
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The response is proportional to the total charge of the biomolecule
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ISFET in electrolyte ( accumulation)

electrolyte

™~

¢

Metal

N

6 n-Si

Hr

|
}—H—O—HH—|

Qbio = QL + QR
= CD|_¢ + Co¢
¢ _ Qbio (pH)
C,, (salt)+C,
_ Qbio
QMOS = Co C, + Co
| = QuosV

Electrolyte reduces sensitivity
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Calculating C,
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Centroid of DL charge
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Screening in 1D
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Increase in salt density decreases sensitivity

Response scaled & time-dependent, but still linear ~ L_>
10
D



At high salt concentration
(Gouy-Chapman theory)

@ low salt
concentration
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Strong screening (perturbative solution)

If MOS charge is small ....
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Strong screening (perturbative solution)
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Response logarithmic Increases with time, Increasing salt
in density, as observed  but logarithmically decreases response
experimentally
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Conclusions

Potentiometric sensors rely on charges of
biomolecules for detection

Many biomolecules can only survive at high —salt
concentration

The screening associated with the salt reduces
charge reflected in the channel.

The screening depends on a complex interplay of
multiple variables.



Review questions

If we bring a pair of DNA in water vs. in air, which
configuration would have stronger repulsion!?

What is the role of salt in water in stabilizing the
DNA pair? Can it play the same role in air?

Why does increasing salt concentration reduce
sensitivity? Explain physically.
If we reduce the oxide thickness of a biosensor,

would it increase or decrease the sensitivity?
What about increasing the dielectric constant?
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Appendix

e Derivation of the Gouy-Chapman theory for
high salt concentration



Strong screening: Gouy-Chapman model
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Gouy-Chapman model (2)
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Gouy-Chapman model (3)
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Gouy-Chapman model (4)
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Appendix

* Modes of operation of a field-effect transistor



How does a lon-sensitive Field Effect
Transistor work (accumulation)

DNA, Protein, etc.
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The role of charge can be viewed as shifting the flat-band voltage
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ISFET in electrolyte ( accumulation)

electrolyte
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How does an ISFET work (inversion)
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How does an ISFET work (subthreshold)
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Although | have used ¢ as an effective gate voltage, it
should be really be viewed as a change in flat-band voltage
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