
Thermal Energy at the Nanoscale
Homework Solution - Week 2

Spring 2013

1. Getting a feel for the numbers

(a) The Bose-Einstein distribution is given by:

f o
BE =

1

exp(E/kBT )− 1
(1)

At T = 300 K, kBT = 0.026 eV. Thus, f o
BE = 0.002 for E = 0.16 eV and f o

BE = 0.0003 for E = 0.21
eV. At T = 3000 K, kBT = 0.258 eV. Thus, f o

BE = 1.164 for E = 0.16 eV and f o
BE = 0.796 for

E = 0.21 eV. The occupation numbers increase with increase in temperature (see Figure 1a). Also
note that f o

BE can be greater than 1 since the Pauli exclusion principle does not apply for bosons.

(b) The Fermi-Dirac distribution is given by:

f o
FD =

1

exp((E − µ)/kBT ) + 1
(2)

At T = 1 K, kBT = 8.63 × 10−5 eV. Thus f o
FD = 1 for E = 1 eV, f o

FD = 1 for E = 11.5 eV and
f o
FD = 0 for E = 20 eV.

At T = 3000 K, kBT = 0.258 eV. Thus f o
FD = 1 for E = 1 eV, f o

FD = 0.68 for E = 11.5 eV and
f o
FD = 0 for E = 20 eV. The Fermi-Dirac distribution changes from 1 to 0 in a small energy window

(of the order of kBT ) around the electrochemical potential (see Figure 1b).

(c) From the given expression, the average thermal speed of argon atoms (m = 40 amu. = 6.64 ×
10−26 kg) at T = 300 K is 398.8 m/s. Thus the average kinetic energy is:

E =
1

2
mArv

2 = 0.033 eV (3)

The Maxwell-Boltzmann distribution is given by f o
MB = exp(−E/kBT ) = 0.28.

(d) For a given wavelength λ, the energy of the photon is given by E = hc/λ. Thus E = 12.42 eV for
λ = 100 nm, E = 2.07 eV for λ = 600 nm and E = 1.38 eV for λ = 900 nm. Also kBT = 0.49
eV at T = 5700 K. Thus f o

BE = 9.82 × 10−12 for λ = 100 nm, f o
BE = 0.0148 for λ = 600 nm and

f o
BE = 0.063 for λ = 900 nm.

2. Working with the Bose-Einstein distribution function
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Figure 1: a) Bose-Einstein distribution function. b) Fermi-Dirac distribution function.

(a) The partition function Ξ is given by:

Ξ =
∑
n

exp (−βEn)

=
n=∞∑
n=0

exp (−β (n+ 1/2) h̄ω)

=
exp(−βh̄ω/2)

1− exp(−βh̄ω)
(4)

(b) The average energy 〈E〉 is given by:

〈E〉 = −∂lnΞ

∂β

= − ∂

∂β

(
−βh̄ω

2
− ln(1− exp(−βh̄ω))

)
=

h̄ω

2
+
h̄ω exp(−βh̄ω)

1− exp(−βh̄ω)

= h̄ω

(
1

exp(βh̄ω)− 1
+

1

2

)
= h̄ω

(
f o
BE +

1

2

)
(5)

3. Phonon DOS in graphene
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Figure 2: Graphene dispersion relation.

The DOS for the LA mode is given by:

DLA(ω) =
1

L2

dN

dK

dK

dω

=
1

vg1L2

L2K

2π

(
N =

πK2

(2π/L)2
,
dω

dK
= vg1

)
=

ω

2πv2g1
(6)

Similarly, the DOS for the linear TA mode is given by:

DTA(ω) =
ω

2πv2g2
(7)

The DOS for the quadratic ZA mode is given by:

DZA(ω) =
1

L2

dN

dK

dK

dω

=
1

2cKL2

L2K

2π

(
N =

πK2

(2π/L)2
,
dω

dK
= 2cK

)
=

1

4πc
(8)

All three modes are present at ω1. Thus,

Dtot(ω1) = DLA(ω1) +DTA(ω1) +DZA(ω1)

=
ω1

2πv2g1
+

ω1

2πv2g2
+

1

4πc
(9)

Only the LA and TA modes are active at ω2:

Dtot(ω2) = DLA(ω2) +DTA(ω2)

=
ω2

2πv2g1
+

ω2

2πv2g2
(10)
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Only the LA mode is active at ω3:

Dtot(ω3) = DLA(ω3)

=
ω3

2πv2g1
(11)

4. Wien’s displacement law for phonons

Under the Debye approximation, the density of states D(ω) is given by:

D(ω) =
ω2

2π2v3g
(12)

The spectral energy density u(ω, T ) is then given by:

u(ω, T ) = h̄ω︸︷︷︸
energy

ω2

2π2v3g︸ ︷︷ ︸
DOS

1

exp(h̄ω/kBT )− 1︸ ︷︷ ︸
occupation

=
h̄

2π2v3g

ω3

exp(h̄ω/kBT )− 1
(13)

At a given temperature, spectral energy density is a maximum when ∂u
∂ω

= 0. Thus,

3ω2(exp(h̄ω/kBT )− 1)− ω3 exp(h̄ω/kBT )
h̄

kBT
= 0 (14)

Defining x∗ = h̄ω/kBT , we arrive at the following implicit equation for x∗.

3(1− exp(−x∗)) = x∗ (15)

The above equation can be solved numerically (using WolframAlpha for example) to obtain x∗ = 2.82.
Thus h̄ωmax = 2.82kBT . The frequency at which the spectral energy distribution is a maximum increases
linearly with temperature. In other words, the peak wavelength is inversely proportional to temperature.
Figure 3 shows snapshots from the online CDF tool where the spectral energy distribution is plotted
for three different temperatures. The peak of the curves moves to the right for increasing temperature.
Use the online tool to tabulate ωmax for a few different temperatures and confirm the linear relationship
between ωmax and T .
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http://www.wolframalpha.com/input/?i=solve+3(1-exp(-x)))+%3D+x
https://nanohub.org/groups/u-spring2013-fisher01/cdf_week2


Figure 3: Spectral energy distribution for three different temperatures
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