Support

Support Options

Submit a Support Ticket

 
  • Discoverability Visible
  • Join Policy Open/Anyone
  • Created 17 Dec 2013

Go to the Education Page


Overview

Welcome to the Thermal Properties group! If you are a student or practicing engineer or scientist who wants to learn more about thermal properties or an instructor looking for materials to use in a course, you can find material here that includes complete courses and seminars on specialized topics.

Much of the material is freely accessible by any visitor, but by joining this group, you can participate in discussions on topics of interest to you, post items to the group wiki or even work on a project with other group members. Additionally, as a group member you may receive notifications about new materials and events of interest to the thermal properties group members. Adding events to the group calendar is as easy as clicking on “add event”.

You can also contribute substantial resources to nanoHUB through the resource contribution process, and then send a message to the group manager so that links to those resources can be added to this group.

This group contains the following:


nanoHUB-U Course

Thermal Energy at the Nanoscale

Purdue University (2013) 30 Lectures
Taught by Timothy S Fisher
Selected Topics: lattice structure, phonons, electrons, carrier statistics, thermal properties, Landauer transport, carrier scattering, transmission


Graduate Courses

Atoms to Heat Sinks

ECE 598EP at the University of Illinois Urbana-Champaign (2009) 15 Lectures.
Taught by Eric Pop
Selected Topics: hot chips, electrons, phonons, thermal conductivity, boundary resistance, thermometry, conductance quantization, power dissipation in semiconductors

Thermal Transport Across Interfaces

Purdue University (2011). 2 Lectures.
Taught by Timothy S. Fisher
Selected Topics: thermal transport, conductivity, interfaces, phonons, electrons, Landauer, ballistic interface resistance, carrier scattering


Thermal Measurements Database

Thermal Measurements Database
Experimental data for thermal materials is obtained using various test methods under specific conditions. A measurement type can be tested using many different methods, and a single method can be used to obtain many measurements. The quality of the documentation describing methods and conditions varies widely.
New thermal data is measured and published all the time, but conflicts in data from different sources make it difficult to determine whether data is comparable and in agreement. Our Thermal Measurements Database offers a searchable repository for the newest thermal measurements data.


Thermal Simulation Tools

nanoMATERIALS nanoscale heat transport
This tool will enable the users to run thermal conductivity simulations on various Si/Ge structures by non-equilibrium MD with LAMMPS package. Pure Si/Ge bulks, pure Si/Ge square nanowires, or supperlattice Si/Ge nanolaminates and nanowires with different periodicity can be selected from the prebuilt structures. Also, users can create Si/Ge supperlattice structures with different sizes and the number of priods by their own. In addition to thermal conductivity, energies, temperature profiles, and atomic trajectories during the simulation will also be output.

Thermophotovoltaic Efficiency Simulation
This tool allows users to simulate and optimize TPV performance when using these components at a system level. Users specify the materials and the geometric structure of the selective emitter, filter, and TPV diode. This information is subsequently supplied to two simulations: a finite difference time-domain simulation, known as MEEP, which yields the thermal emission spectrum of the photonic structure; and a Fourier modal method simulation, known as S4, which outputs the filter spectrum. Both of these results are then combined with other data provided in the GUI to yield the overall TPV system efficiency.
Modeling Thermal Interaction between Laser Light and AFM
We find that a small change in the size of the AFM cantilever caused by thermal expansion from the laser is measureable. Our simulated results suggest that both the laser power and spot positions significantly change the resonant response of the cantilevers. AFM cantilevers are resonated during the tapping mode.

Created by Hub Admin User Last Modified Wed June 18, 2014 5:32 am by Hub Admin User

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.