Find information on common issues.
Ask questions and find answers from other users.
Suggest a new site feature or improvement.
Check on status of your tickets.
[Illinois] CSE Seminar Series: Advances in First-principles Computational Materials Science
20 Nov 2012 | Online Presentations | Contributor(s): Elif Ertekin
Title: Advances in first-principles computational materials scienceSubtitle: Things we can calculate now, that we couldn't when I was in grad school.The capability to rationally design new materials with tailored properties and functionality on a computer remains a grand challenge whose success...
Computational Nanoscience, Lecture 29: Verification, Validation, and Some Examples
5.0 out of 5 stars
16 May 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin
We conclude our course with a lecture of verification, and validation. We describe what each of these terms means, and provide a few recent examples of nanoscale simulation in terms of these concepts.University of California, Berkeley
Computational Nanoscience, Lecture 28: Wish-List, Reactions, and X-Rays.
After a brief interlude for class feedback on the course content and suggestions for next semester, we turn to modeling chemical reactions. We describe chain-of-state methods such as the Nudged Elastic Band for determining energy barriers. The use of empirical, QM/MM methods are described. We...
Computational Nanoscience, Lecture 27: Simulating Water and Examples in Computational Biology
16 May 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman
In this lecture, we describe the challenges in simulating water and introduce both explicit and implicit approaches. We also briefly describe protein structure, the Levinthal paradox, and simulations of proteins and protein structure using First Principles approaches and Monte Carlo...
Computational Nanoscience, Lecture 23: Modeling Morphological Evolution
15 May 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman
In this lecture, we present an introduction to modeling the morphological evolution of materials systems. We introduce concepts of coarsening, particle-size distributions, the Lifshitz-Slyozov-Wagner model, thin film growth modes (Layer-by-Layer, Island growth, and Stranski-Krastanov), and...
Top 5 shown | See more results