Support Options

Submit a Support Ticket



  • Organization
    University of Virginia, Electrical Engineering

  • Employment Type

  • Address(s)
    Enter an Address

  • Biography

    My research focuses on three aspects of
    nanoelectronic modeling and simulation:

    (a) Fundamental physics of current flow through nanosystems: Traditional CAD tools for electronic conduction are based on macroscopic concepts such as mobility and diffusion that do not apply at these length scales. Our methods include effects due to quantum interference right from the outset, along with inelastic scattering, ‘friction’ and heating due to vibrations and spins, strong non-equilibrium many-body effects, and time-dependent effects due to hysteretic switching, memory and noise.

    (b) Computational modeling: Here we develop the formal evolution equations into quantitative simulation tools. This includes semi-empirical as well as ‘first principles’ methods for capturing chemistry, bandstructure and transport, describing the nano-channels and contact surfaces atomistically. Special attention is aimed at multiscaling and embedding techniques to describe hetero-interfaces and surface states, as in hybrid molecule-silicon devices.

    © Device engineering: Here we combine the formal equations with numerical simulations to identify performance advantages and limitations of nanoscale devices, such as resonant tunneling diodes, switches, conductors, interconnects, transistors and electronic sensors made out of various materials such as molecules, nanotubes, nanowires, spintronic or magnetic elements and silicon quantum dots. Part of our current interests involve exploring hybrid devices operating on novel principles, such as gate-tunable scattering centers for characterization and detection, conformationally gated molecules for nano-relays, molecular redox centers and motors integrated on a silicon CMOS platform for memory and heat sinking.

  • Interests
    Enter your Interests., a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.