Support

Support Options

Submit a Support Ticket

 

Seeing the Light: Berkeley Lab Scientists Bring Plasmonic Nanofields Into Focus

“We wondered whether there was a way to use light already present in our bowties—localized photons—to probe these fields and serve as a reporter,” says Schuck. “Our technique is also sensitive to imperfections in the system, such as tiny structural flaws or size effects, suggesting we could use this technique to measure the performance of plasmonic devices in both research and development settings.”

In parallel with Schuck’s experimental findings, Jeff Neaton, Director of the Molecular Foundry ’s Theory of Nanostructured Materials Facility and Alex McLeod, an undergraduate student working at the Foundry, developed a web-based toolkit, designed to calculate images of plasmonic devices with open-source software developed at Massachusetts Institute of Technology. For this study, the researchers simulated adjusting the structure of a double bowtie antenna by a few nanometers to study how changing the size and symmetry of a plasmonic antenna affects its optical properties.

“By shifting their structure by just a few nanometers, we can focus light at different positions inside the bowtie with remarkable certainty and predictability,” said McLeod. “This work demonstrates that these nanoscale optical antennae resonate with light just as our simulations predict.”

Useful for researchers studying plasmonic and photonic structures, this toolkit will be available for download on nanoHUB, a computational resource for nanoscience and technology created through the National Science Foundation’s Network for Computational Nanotechnology.

Read full article...

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.