
© Compact Model Council, 2007 Page 1

CMC Compact Model QA Specification

Revision History

Release Date Authors Comments
1.3 06/21/2007 C. C. McAndrew

J. R. Jones
Code updates for Verilog-A support.
Documentation format and content updates.

1.2 06/30/2006 C. C. McAndrew Support for floating nodes added
Minor corrections made

1.1 05/08/2006 C. C. McAndrew Verilog-A file specification added.
1.0 04/13/2006 C. C. McAndrew Initial Release

Review History

Revision Date Reviewers

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 2 of 27

Table of Contents
1 Introduction...3

2 Preamble ...4

3 Test Specification Requirements ..6

Table 1: Variants defined for testing. ...7

4 Test Specification Definition and Test and Program Directory Structure8

Table 2: QA test file and directory structure and contents. ..8

Table 3: Header (test independent) keywords and their meanings.9

Table 4: Test specific keywords and their meanings..10

5 Test Result Generation ..12

6 Reference Test Results ..13

7 Procedure for Comparing Test Results ..14

8 Example Code...15

Appendix 1. Directory and File Hierarchy ...16

Appendix 2. Example qaSpec File for bsim3v3 ...17

Appendix 3. Example Makefile for Running the Tests ..19

Appendix 4. Usage Message from the runQaTests.pl Program.....................................24

Appendix 5. Subroutines in perl Modules..25

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 3 of 27

1 Introduction

The Compact Model Council (CMC) is a body that operates under the auspices of the General
Electrical Industries Association (GEIA) to standardize semiconductor device compact models. An
important aspect of a model is proper quality assurance (QA), both to verify the correctness of the
definition of a model and to verify the correctness of implementations of a model in circuit
simulators. This document defines a process for compact model QA, including test requirements, test
specification definition, provision of reference test results, and criteria for comparison to these test
results. The QA procedure is intended to help verify the correctness of a compact model definition,
by a model developer, and the correctness of a compact model implementation, by a simulator
developer.

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 4 of 27

2 Preamble
Verification of the correctness of the definition of a compact model and the correctness of
implementations of a compact model in a simulator are areas of compact modeling that need to be
improved. Correctness of the physics embodied within a model and the accuracy with which a model
can fit measured device characteristics are subjective, and are best done through human analysis (peer
review). However, many aspects of a model definition and implementation are not subjective, yet
have historically been the source of many problems with model definition and/or implementation.

At the model definition level, specification of multiplicity (m-factor) scaling, symmetric pin flipping
(e.g. source and drain reversal for a MOSFET), and device polarity type (n- or p-polarity) have been
the source of many errors in model definition and model implementations. This is because often the
core model equations are developed and simulated primarily on a single device (m=1), of one device
polarity type (n-type), and with symmetric pins biased only in one configuration (0≥dsV).

At the model implementation level, because of the lack of provision of complete test specifications
and results along with a model, there has been no standard method available to verify the
implementation of a model in all simulators. For example, although basic)(VI characteristics may be
correct, more detailed parts of a device model, such as noise, have historically proven to give
different results between different implementations.

To help model developers, model implementers, and model users, the CMC has defined a process for
the testing of compact models. This document defines that process.

Defining and providing verified reference results for an exhaustive set of tests for a model is a
significant amount of work. It is not expected that all existing models will have such a set of tests and
test results generated for them. It is expected that models being developed will have the tests and test
results generated as a standard part of the model development process. The incremental effort
involved in doing this is small and, in fact, can reduce overall model development time as it provides
a structure for verification of implementation of an incremental addition to a model. The physical
correctness and accuracy of this model enhancement will need to be verified against data anyway,
and the expectation is that the parameter sets and simulation results used for verification of the model
enhancement would then form the basis of the test for this specific feature of the model.

It is difficult, if not impossible, to generate tests that provide 100% code coverage, especially in terms
of every possible combination of conditional code within a model. However, the expectation is that,
over time, tests should be defined that exercise all aspects of a model and if there are different
sections of code that are executed based on various parameter or bias values, then tests that exercise
each section of code should be included as part of the standard QA test specification.

The expectation is every model will come with a set of test specifications and reference results. The
reference results must be manually checked and verified to give the expected behavior. The test
specifications will be in the form of a file that defines the tests in the format defined below and used
in the example of Appendix 2. The test procedure is that the tests from the test specification file will
be run on a specific implementation of a model, and that the test results will be generated and written
to a file in a standard format. The most efficient and reliable way to do this is using automated scripts
that parse the test specification file, set up and run the appropriate netlists for a specific simulator in
which the implementation is being tested, and collate the results and write them to a file. It is not
possible to provide such a test script for every simulator, however examples that indicate how this
can be done are provided, for a variety of simulators and netlist formats. A directory and file naming
convention, to allow a consistent structure for the results (both reference and those generated for one

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 5 of 27

specific implementation verification) are defined. The results from running of the tests are then
compared against the reference results. Scripts to do this comparison, with tolerances, are provided.
Because of convergence criteria within simulators and different precision in which results are printed,
a decision about whether two implementations are “the same” cannot be made based on an exact
comparison of the results. The toleranced comparison is intended to provide a reasonable decision on
whether two sets of results are the same (having to manually inspect hundreds or thousands of
numbers to personally make such a decision is neither a pleasant nor an easy task). Automated
checking that numbers are the “same” is not easy, and it is expected that there will be times that
manual checking will be required, and that the script used for comparison will be continually
improved over time.

For simplicity, under UNIX a Makefile can be set up to automatically run the tests, compare the tests
results, and generate a report that allows a simple pass or fail evaluation.

NOTE: all numbers specified for the tests, including for instance and model parameters, must be in
numerical format (including scientific notation) and must not use engineering unit qualifiers, because
the latter differ between different simulators.

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 6 of 27

3 Test Specification Requirements
An individual test specification should exist for each “sub-model” of a model. For example, for a
MOSFET, the gate current model is one specific “sub-model.” A set of parameters and reference test
results should be provided for each sub-model, which primarily exercise that aspect of a model.

Because there can be interactions between sub-models, a test specification and test results should also
be provided for the case where all sub-model effects are active. Given the combinatorial nature of
inclusion of an enumerated list of separate effects, it is likely impractical to separately test all
possible combinations. But it is expected that there should at least be an individual test for each sub-
model effect and a test where all sub-model effects are activated. If there are any specific
combinations that are expected to be likely to lead to problems with model definition or
implementation, then separate tests should be provided for these combinations of sub-model effects.

Tests should be defined for DC, AC, and noise simulations, over a variety of biases, frequencies,
device geometries, and temperatures.

For now, tests are not defined for transient analyses. This is because different time-step control
algorithms in different simulators can generate results at different time points. Comparison of two
sets of transient simulations to determine if they are “the same” is thus difficult to do, and often is
done based on visual inspection of plots of transient results.

If there are components of a model where alternative blocks of code are executed based on the
settings of switches or the values of parameters, or also bias, geometry, or temperature, then
parameter sets and/or bias/geometry/temperature values should be specified for testing so that the
different blocks of code are tested. The goal should be 100% code coverage in tests, although as
noted above this may not always be realistic to achieve. To keep the top level test directory
uncluttered specific parameter sets used for testing should be stored in a sub-directory.

If a model has pins that should be symmetric, such as source and drain for a MOSFET or JFET, then
all tests should also be applied with biases to these pins flipped.

If a model is applicable to different polarity devices, then all tests should be applied to both n- and p-
polarity devices.

If a model supports the instance multiplicity parameter m then it should be tested for m=1 and at least
one other value m>1.

There are efficient ways to set up netlists so that these last 3 items are tested automatically; this is
described in Appendix 5. The different implementation aspects of a model, such as polarity,
symmetric pin flipping, shrink, scale and m, are termed variants. The possible variants, used as
identifiers in results file names are shown in the table at the top of the next page.

The test procedure is constructed so that separate tests for all of these variants do not have to be
defined, there is a method for specifying which variants should be tested and then the QA procedure
automatically tests these variants.

The conversion from instance parameter units of length to simulator units of length (the latter is
usually meters), is multiplication by scale*(1-shrink /100).

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 7 of 27

standard no variation
noFlip_P polarity changed from N-type (assumed reference) to P-type
flip_N symmetric pins flipped
flip_P polarity changed from N-type to P-type and symmetric pins flipped
shrink shrink factor applied to instance parameters (%)
scale scale factor applied to instance parameters
m multiplicity factor applied to the device instance

Table 1: Variants defined for testing.

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 8 of 27

4 Test Specification Definition and Test and Program Directory Structure
Appendix 1 shows the directory and file hierarchy. The test definitions for a model (referred to here
as “model”) are expected to be defined in a QA specification file called qaSpec at the top level
directory for that model, and there should be a Makefile that runs the tests defined in the qaSpec
file. For consistency, it is recommended that a separate directory model be set up for each model,
that the perl programs and modules be stored in a directory lib at the same level as the model
directories (and be added to your UNIX path environment variable). The program
runQaTests.pl is the script that runs the tests and compares the results (and is in the lib
directory).

The structure for the files and results directories (all under the directory model, see Appendix 1 for a
visual depiction) is:

Makefile a file for the make program that runs the tests
qaSpec the file with information defining the model and test

information
parameters/ directory where model parameter sets are located
reference/ directory where reference results are located
reference/test.standard reference results for the standard test variant of each

test
results/ top level directory for results
results/simulator/ directory for test results for each simulator
results/simulator/vers/ directory for version vers of the simulator
results/simulator/vers/OS/ directory for each computer architecture and

operating system
results/simulator/vers/OS/test.var test results for variant var of each test

Table 2: QA test file and directory structure and contents.

The directory hierarchy includes identification of different versions of simulators and different
computer platforms, as they can give different results and as each of these really does need to be
tested independently. The OS identifier is formed from computer architecture, operating system
name, and operating system version, joined with underscores. On a UNIX system these are
determined from the uname command with the –p, –s, and –r flags, respectively. On a non-UNIX
machine these are determined from the perl Config module. The subroutine platform in the
lib/modelQaTestRoutines.pm file generates the appropriate directory name.

The format of the test specification file is as follows. The file consists of two sections, a header
section with general information that is relevant to all tests, and a section that defines specific tests.
The format is based on initial keywords in a line. Appendix 2 gives an example. The keyword test
defines the start of information for that test, and ends the specification of the general information. If a
keyword can be specified in both a general and a test specific block, the specification in the general
information is the default for all tests, and a test specific specification overrides the global
specification for that single test.

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 9 of 27

Comments are in the C++ style, anything from // to the end of a line is stripped out. Conditional
statements can be included via `ifdef `else `end constructs, and variables can be defined and
undefined via `define and `undef directives. These may be placed anywhere in a QA spec file,
and may be nested. The name of the simulator being tested is automatically set as a defined variable,
so conditionals based on the simulator name included in QA specification files are automatically
processed. A hierarchical `include construct is supported to include specifications in other files.

Qualifiers for some keywords can be lists; these can be either space or comma delimited.

The following can be specified in the general information section:

Keyword Qualifiers Description
[np]TypeSelectionArguments argList model selection specification (used to build

the initial portion of a .model card, so includes
parameters like level, version, type)

scaleParameters shrink,
scale, m

parameters that affect scaling of a device,
shrink and scale affect instance
parameters, m is device multiplicity;
specifying a qualifier triggers testing of that
variant

keyLetter [a-z] for simulators that require it the first letter of
the instance line appropriate for the type of
device model being tested, e.g. m for MOSFET

pins p1 p2 ... list of pin (terminal) names for the device
linearScale iParList list of instance parameters that have the units

of dimension, e.g. l and w
areaScale iParList list of instance parameters that have the units

of square dimension, e.g. as and ad
temperature valueList list of temperatures (°C) at which each test

will be run
checkPolarity [y|n] flag to switch on checking of polarity flipping

(both polarity model selections must also be
specified for this to be active)

symmetricPins p1 p2 define pins for which a model should be
symmetric

verilogaFile filename name of the file that contains the Verilog-A
definition of the model

Table 3: Header (test independent) keywords and their meanings.

If both nTypeSelectionArguments and pTypeSelectionArguments are specified, and
the symmetricPins keyword is also specified, then all four combinations of model polarity type
and symmetric pin flipping are tested.

The following can be specified in the test specific section:

Keyword Qualifiers Description
test name defines the name for the test,

results files are name.var

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 10 of 27

where var is each variant that is
exercised

temperature valueList list of temperatures (°C) at which
each test will be run

biases V(p1)=val V(p2)=val ... define the voltage biases for each
pin

float pinList define pins that are to be floated
(e.g. local temperature rise pin),
float pins are not pin flipped or
polarity reversed or scaled by m,
and cannot be included in any
outputs for AC or noise tests

biasList V(pi)=val1,val2,... define a list of bias values for one
pin, here pin pi

biasSweep V(pk)=start,stop,step define a bias sweep for one pin,
here pin pk

freq [lin|dec|oct] pts fMin fMax frequency specification, for AC
and noise tests, follows SPICE
convention (Note: for dec and
oct pts is the number of points
per decade or octave, for lin it
is the number of points)

outputs I(p1),I(p2),V(p3),... do a DC test, simulate and store
currents in the specified pins, or
voltages for floating pins

outputs G(pi,pk),C(pj,pk),... do an AC test, simulate and store
the listed conductances and
capacitance coefficients

outputs N(p1) do a noise test, simulate and store
the noise current in the specified
pin (only one is allowed)

instanceParameters iPar1=val1 iPar2=val2 ... list of name=value pairs for
instance parameters for the test

modelParameters [mPar=val|parameterFile] model parameters for the model
for the test, can be lists on
name=value pairs, or lists of file
names that contain instance
parameters

Table 4: Test specific keywords and their meanings.

For some keywords, e.g. scaleParameters or modelParameters, multiple qualifiers for
keywords are acceptable, all are used, and if there are multiple occurrences of these keywords in one
header or test specification then all qualifiers specified for all occurrences of the keyword
specification are used. These are generally keywords that can have lists specified for qualifiers. For
other keywords, generally those that can have only a single qualifier, only one occurrence of a
keyword is expected; if there are multiple specifications of these keywords the last one in order in the
file is used.

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 11 of 27

For modelParameters, the qualifier list can be any mixture of name=value pairs and file names,
in any order. For example, you could specify a file containing a complete set of model parameters,
and then set up tests for individual effects by adding a subsequent modelParameters declaration
that set switch parameters to turn off all but the desired effect. A model parameter file should contain
lines with name=value pairs only, but each line may contain more than one name=value pair.

If a model parameter is specified more than once then a warning message is printed and the last value
that was encountered is used.

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 12 of 27

5 Test Result Generation
Because different simulators have different analysis capabilities, different netlists and analysis
specifications and output formats, it is not possible to provide standard specifications of, or scripts to
implement, how tests will be exercised for a specific simulator. The test types defined (DC, AC, and
noise) are of sufficiently limited scope, and the test specifications are sufficiently simple, that it is
anticipated that it is not too difficult to implement programs that will automatically run the specified
tests and generate the required test results.

Example scripts for test results generation are available for some simulators (Spice3f5, Hspice©,
Spectre©, and ADS©); if a model implementation is to be verified in another simulator appropriate
routines that implement the tests must be provided. Appendix 5 gives some details.

The overall generation of test results should be controlled by a Makefile; Appendix 3 gives an
example. This file should control the overall generation and comparison of test results. A script,
runQaTests.pl, is provided that actually runs all of the tests; the Makefile runs this program. The
script can also determine the computer architecture and operating system version, analyze the QA
spec file and list the tests and variants that are defined, and determine which version of a simulator is
being used. Appendix 4 lists the help message from runQaTests.pl, which details the possible
calling options. The Makefile uses different calls to this script to control automated running of the
tests and variants.

The runQaTests.pl script automatically stores test results according to the directory hierarchy
and file naming conventions defined above.

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 13 of 27

6 Reference Test Results
Reference test results, that need to be manually verified, are expected to be provided as the “golden”
standard against which model implementations are compared. These are to be stored in the directory
reference, for each test. Only results for the standard variant should be provided; test results for
other variants are expected to be manipulated (by the test routines, via the mechanism described in
Appendix 5) so that they provide results identical to the standard. The automated test script compares
results of the standard variant simulations to the reference test results, and compares results of
simulations for other variants to those of the standard results (not the reference results). This is
because the variant tests are designed to, as much as is possible, give results that exactly match those
of the standard variant (i.e. there should not be slight differences in the last digit of precision printed
by a simulator that depend on polarity or any other variant property). There may be slight differences
for results generated from one platform or simulator because of different convergence criteria,
different formats for printing of results, different compilers or compiler options, etc. These
differences will only show up in the information message printed when comparing the standard
variant simulations to the reference results, and not when other variants are compared to the standard
for one simulator, version, architecture, operating system, etc. This makes the automated regression
test output cleaner to look at and easier to interpret.

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 14 of 27

7 Procedure for Comparing Test Results
Comparing two sets of simulation results to check if they are the same or different is not a simple
task. Differences in convergence algorithms, compilers or compiler options used to generate the
simulator executable, and printing formats can lead to differences in results between different
simulators that are not indicative of differences in model implementations between the simulators
(i.e. of errors in one or more implementations). Also, at low current levels, differences in how things
like gmin are handled can lead to differences in simulation results not really tied to problems in the
implementation of the core model. These differences can still be a sufficient criterion to reject a
particular implementation as not matching the reference standard.

Aside: to prevent “false positives” in testing differences in model implementations in different
simulators, it can be useful to define the tests so that they do not include evaluation when the bias
across a device is zero, where simulation differences can be small in an absolute sense but large in a
relative sense when the target result is zero current. Simulation of bias sweeps through zero bias are
useful in evaluating model symmetry; specific automated tests for DC and AC symmetry may be
added in future, but for now should be part of the evaluation and verification process during model
development.

The script compareSimulationResults.pl is provided to help, and standardize, numerical
comparison of results. This script compares results with relative and absolute comparison criteria tied
to the analysis type (checking for differences in noise currents of order 10-22 is very different from
checking for differences in DC currents of order 1mA). This script returns strings that qualitatively
evaluate the comparison between results. Possible comparison returns are: failure if there are
different numbers of simulation and reference results (likely a simulation failure); difference outside
the prescribed tolerances; match within the prescribed tolerances; and an exact match.

The Makefile, test program, and comparison program are constructed so that when they run
coherently they generate a nicely formatted output that is easy to visually scan to evaluate success or
failure of the QA test run.

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 15 of 27

8 Example Code
The simplest way to set up the appropriate test files and directories is to copy an existing example.
An example, set up for the BSIM3v3 model, is available at

http://www.geia.org/

Navigate to

“Councils & Committee >> SSTC Technical Committees >> CMC – Compact Model Council”

and select, under the “Website Content” listing at the bottom of the page,

“Standard Models and Downloads”

The links are under the “Model QA and Release” item of the Downloads list. The link

http://www.geia.org/index.asp?bid=1333

will directly take you to the “Standard Models and Downloads” page.

The example includes a test specification file, a make file to run the tests, complete reference results,
and all of the programs (in perl) to run the tests and compare the results. All examples in this
document are from this set of reference QA procedures.

The examples provided run simulations for: Spice3f5, Hspice©, Spectre©, and ADS©.

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 16 of 27

Appendix 1. Directory and File Hierarchy

lib/
 runQaTests.pl
 modelQaTestRoutines.pm
 compareSimulationResults.pl
 spice.pm
 otherSimulator.pm
model1/
 Makefile
 qaSpec <- this is the test specification file
 parameters/
 parameterFile1
 parameterFile2
 ...
 reference/
 testName1.standard
 testName2.standard
 ...
 results/
 simulator1/
 version1/
 OS1/
 testName1.standard
 testName1.variant1
 testName1.variant2
 ...
 testName2.standard
 testName2.variant1
 testName2.variant2
 ...
 simulatorJ/
 versionK/
 OSL/
 testNameM.variantN
model2/
 Makefile
 qaSpec
 parameters/

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 17 of 27

Appendix 2. Example qaSpec File for bsim3v3

//
// Example test specification for bsim3v3 (version 3.2.4)
//

//
// Simulator specific information
// These arguments are added to the model card
// specification to invoke the desired model in
// different simulators (which can have different
// names or levels for the same model) and to switch
// between nType and pType polarities.
// It is assumed that there are no polarity specific
// parameters.
//

`ifdef spice
nTypeSelectionArguments nmos level=7 version=3.2.4
pTypeSelectionArguments pmos level=7 version=3.2.4
`endif
`ifdef hspice
nTypeSelectionArguments nmos level=53 version=3.24
pTypeSelectionArguments pmos level=53 version=3.24
scaleParameters scale
`endif
`ifdef spectre
nTypeSelectionArguments bsim3v3 type=n version=3.24
pTypeSelectionArguments bsim3v3 type=p version=3.24
scaleParameters scale
`endif
`ifdef mica
nTypeSelectionArguments nmos level=9 version=3.2.4
pTypeSelectionArguments pmos level=9 version=3.2.4
scaleParameters scale shrink
`endif
`ifdef ads
nTypeSelectionArguments MOSFET Idsmod=8 NMOS=yes Version=3.24
pTypeSelectionArguments MOSFET Idsmod=8 PMOS=yes Version=3.24
`endif

//
// General test-independent information
//

keyLetter m
pins d g s b
linearScale w l ps pd
areaScale as ad
temperature 27 -50 150
checkPolarity yes
symmetricPins d s
scaleParameters m

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 18 of 27

//
// Specific tests
//

test dcSweep
biases V(s)=0 V(b)=0
biasList V(g)=0.4,0.6,0.8,1.0,1.2
biasSweep V(d)=0.1,1.2,0.1
outputs I(d)
instanceParameters w=10.0e-6 l=1.0e-6
modelParameters parameters/nmosParameters

test acVd
temperature 27 150
biases V(s)=0 V(b)=0 V(g)=1.2
biasSweep V(d)=0.1,1.2,0.1
outputs G(d,g) G(d,d) C(g,s) C(g,d)
instanceParameters w=10.0e-6 l=1.0e-6
modelParameters parameters/nmosParameters

test acFreq
temperature 27
biases V(s)=0 V(b)=0 V(d)=1.2 V(g)=1.2
freq dec 10 1e3 1e9
outputs C(g,g) C(g,s) C(g,d)
instanceParameters w=10.0e-6 l=1.0e-6
modelParameters parameters/nmosParameters

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 19 of 27

Appendix 3. Example Makefile for Running the Tests

Example Makefile to run tests and check results.

This is an example makefile for running QA tests on a
model and then checking the simulated results against
reference results. A separate target is defined for each
variant of the model. The program runQaTests.pl runs the
tests, and that program expects a perl module SIMULATOR.pm
to be provided for each simulator that is tested.
Examples of these are provided.

qaSpecFile = qaSpec
qaResultsDirectory = results
testProgramName = runQaTests.pl

help:
 @echo "" ; \
 echo "Valid targets are:" ; \
 echo "" ; \
 echo "all run tests and compare results for all simulators" ; \
 echo "" ; \
 echo "spectre run tests and compare results spectre" ; \
 echo "hspice run tests and compare results hspice" ; \
 echo "ads run tests and compare results ads" ; \
 echo "spice run tests and compare results spice" ; \
 echo "" ; \
 echo "clean remove all previously generated simulation results"; \
 echo "" ; \
 echo "NOTE: if test results exist they are not resimulated" ; \
 echo "NOTE: to force resimulation run \"make clean\" first" ; \
 echo ""

all: spectre hspice ads spice

spectre tests

spectre:
 @-echo ""; \
 localPlatform=`$(testProgramName) -platform` ; \
 localVersion=`$(testProgramName) -sv -s spectre $(qaSpecFile)` ; \
 localVersionAndPlatform=$$localVersion._.$$localPlatform ; \
 echo "******"; \
 echo "****** $(qaSpecFile) tests for spectre"; \
 echo "****** (for version $$localVersion on platform $$localPlatform)"; \
 echo "******"; \
 for test in `$(testProgramName) -lt -s spectre $(qaSpecFile)` ; \
 do \
 echo ""; \
 echo "****** Checking test (spectre): $$test" ; \
 for var in `$(testProgramName) -lv -s spectre $(qaSpecFile)` ; \
 do \
 $(testProgramName) -s spectre -r -t $$test -var $$var $(qaSpecFile) ; \

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 20 of 27

 done ; \
 done ; \
 for version in `ls -C1 $(qaResultsDirectory)/spectre` ; \
 do \
 for platform in `ls -C1 $(qaResultsDirectory)/spectre/$$version` ; \
 do \
 versionAndPlatform=$$version._.$$platform ; \
 if [$$versionAndPlatform = $$localVersionAndPlatform] ; \
 then \
 break ; \
 fi ; \
 echo "" ; \
 echo "******"; \
 echo "****** Comparing existing $(qaSpecFile) tests for spectre"; \
 echo "****** (for version $$version on platform $$platform)"; \
 echo "******"; \
 for test in `$(testProgramName) -lt -s spectre $(qaSpecFile)` ; \
 do \
 echo ""; \
 echo "****** Checking test (spectre): $$test" ; \
 for var in `$(testProgramName) -lv -s spectre $(qaSpecFile)` ; \
 do \
 $(testProgramName) -c $$version $$platform \
 -s spectre -t $$test -var $$var $(qaSpecFile) ; \
 done ; \
 done ; \
 done ; \
 done

hspice tests

hspice:
 @-echo ""; \
 localPlatform=`$(testProgramName) -platform` ; \
 localVersion=`$(testProgramName) -sv -s hspice $(qaSpecFile)` ; \
 localVersionAndPlatform=$$localVersion._.$$localPlatform ; \
 echo "******"; \
 echo "****** $(qaSpecFile) tests for hspice"; \
 echo "****** (for version $$localVersion on platform $$localPlatform)"; \
 echo "******"; \
 for test in `$(testProgramName) -lt -s hspice $(qaSpecFile)` ; \
 do \
 echo ""; \
 echo "****** Checking test (hspice): $$test" ; \
 for var in `$(testProgramName) -lv -s hspice $(qaSpecFile)` ; \
 do \
 $(testProgramName) -s hspice -r -t $$test -var $$var $(qaSpecFile) ; \
 done ; \
 done ; \
 for version in `ls -C1 $(qaResultsDirectory)/hspice` ; \
 do \
 for platform in `ls -C1 $(qaResultsDirectory)/hspice/$$version` ; \
 do \
 versionAndPlatform=$$version._.$$platform ; \
 if [$$versionAndPlatform = $$localVersionAndPlatform] ; \
 then \

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 21 of 27

 break ; \
 fi ; \
 echo "" ; \
 echo "******"; \
 echo "****** Comparing existing $(qaSpecFile) tests for hspice"; \
 echo "****** (for version $$version on platform $$platform)"; \
 echo "******"; \
 for test in `$(testProgramName) -lt -s hspice $(qaSpecFile)` ; \
 do \
 echo ""; \
 echo "****** Checking test (hspice): $$test" ; \
 for var in `$(testProgramName) -lv -s hspice $(qaSpecFile)` ; \
 do \
 $(testProgramName) -c $$version $$platform \
 -s hspice -t $$test -var $$var $(qaSpecFile) ; \
 done ; \
 done ; \
 done ; \
 done

ads tests

ads:
 @-echo ""; \
 localPlatform=`$(testProgramName) -platform` ; \
 localVersion=`$(testProgramName) -sv -s ads $(qaSpecFile)` ; \
 localVersionAndPlatform=$$localVersion._.$$localPlatform ; \
 echo "******"; \
 echo "****** $(qaSpecFile) tests for ads"; \
 echo "****** (for version $$localVersion on platform $$localPlatform)"; \
 echo "******"; \
 for test in `$(testProgramName) -lt -s ads $(qaSpecFile)` ; \
 do \
 echo ""; \
 echo "****** Checking test (ads): $$test" ; \
 for var in `$(testProgramName) -lv -s ads $(qaSpecFile)` ; \
 do \
 $(testProgramName) -s ads -r -t $$test -var $$var $(qaSpecFile) ; \
 done ; \
 done ; \
 for version in `ls -C1 $(qaResultsDirectory)/ads` ; \
 do \
 for platform in `ls -C1 $(qaResultsDirectory)/ads/$$version` ; \
 do \
 versionAndPlatform=$$version._.$$platform ; \
 if [$$versionAndPlatform = $$localVersionAndPlatform] ; \
 then \
 break ; \
 fi ; \
 echo "" ; \
 echo "******"; \
 echo "****** Comparing existing $(qaSpecFile) tests for ads"; \
 echo "****** (for version $$version on platform $$platform)"; \
 echo "******"; \
 for test in `$(testProgramName) -lt -s ads $(qaSpecFile)` ; \
 do \
 echo ""; \

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 22 of 27

 echo "****** Checking test (ads): $$test" ; \
 for var in `$(testProgramName) -lv -s ads $(qaSpecFile)` ; \
 do \
 $(testProgramName) -c $$version $$platform \
 -s ads -t $$test -var $$var $(qaSpecFile) ; \
 done ; \
 done ; \
 done ; \
 done

spice tests

spice:
 @-echo ""; \
 localPlatform=`$(testProgramName) -platform` ; \
 localVersion=`$(testProgramName) -sv -s spice $(qaSpecFile)` ; \
 localVersionAndPlatform=$$localVersion._.$$localPlatform ; \
 echo "******"; \
 echo "****** $(qaSpecFile) tests for spice"; \
 echo "****** (for version $$localVersion on platform $$localPlatform)"; \
 echo "******"; \
 for test in `$(testProgramName) -lt -s spice $(qaSpecFile)` ; \
 do \
 echo ""; \
 echo "****** Checking test (spice): $$test" ; \
 for var in `$(testProgramName) -lv -s spice $(qaSpecFile)` ; \
 do \
 $(testProgramName) -s spice -r -t $$test -var $$var $(qaSpecFile) ; \
 done ; \
 done ; \
 for version in `ls -C1 $(qaResultsDirectory)/spice` ; \
 do \
 for platform in `ls -C1 $(qaResultsDirectory)/spice/$$version` ; \
 do \
 versionAndPlatform=$$version._.$$platform ; \
 if [$$versionAndPlatform = $$localVersionAndPlatform] ; \
 then \
 break ; \
 fi ; \
 echo "" ; \
 echo "******"; \
 echo "****** Comparing existing $(qaSpecFile) tests for spice"; \
 echo "****** (for version $$version on platform $$platform)"; \
 echo "******"; \
 for test in `$(testProgramName) -lt -s spice $(qaSpecFile)` ; \
 do \
 echo ""; \
 echo "****** Checking test (spice): $$test" ; \
 for var in `$(testProgramName) -lv -s spice $(qaSpecFile)` ; \
 do \
 $(testProgramName) -c $$version $$platform \
 -s spice -t $$test -var $$var $(qaSpecFile) ; \
 done ; \
 done ; \
 done ; \
 done

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 23 of 27

clean:
 @/bin/rm -rf $(qaResultsDirectory)/spectre spectreCkt* *ahdlcmi
 @/bin/rm -rf $(qaResultsDirectory)/hspice hspiceCkt*
 @/bin/rm -rf $(qaResultsDirectory)/ads adsCkt* spectra.raw
 @/bin/rm -rf $(qaResultsDirectory)/spice spiceCkt* b3v3check.log

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 24 of 27

Appendix 4. Usage Message from the runQaTests.pl Program

runQaTests.pl: run model QA tests

Usage: runQaTests.pl [options] -s simulatorName qaSpecificationFile

Files:
 qaSpecificationFile file with specifications for QA tests
 simulatorName name of simulator to be tested

Options:
 -c version platform do not try to simulate, only compare results
 for version and platform
 -d debug mode (leave intermediate files around)
 -h print this help message
 -i print info on file formats and structure
 -l list tests and variants that are defined
 -lt list tests that are defined
 -lv list test variants that are defined
 -nw do not print warning messages
 -platform prints the hardware platform and operating
 system version
 -p plot results (limited, only standard test variant)
 -P plot results (complete, for all test variants)
 -r re-use previously simulated results if they exist
 (default is to resimulate, even if results exist)
 -sv prints the simulator version being run
 -t TEST only run test TEST (can be a comma delimited list)
 -var VAR only run variant VAR (can be a comma delimited list)
 -v verbose mode
 -V really verbose mode, print out each difference detected

The –lt and –lv flags are used by the Makefile to determine which tests and variants to loop over.

The –sv and –platform flags are used by the Makefile to determine the simulator version and
computer architecture and operating system information, and these are used as hierarchy levels in the
directory structure that stores the test results.

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 25 of 27

Appendix 5. Subroutines in perl Modules
Note: the runQaTests.pl program expects to find the perl modules that it requires in the same
directory in which it resides. This directory should be added to your PATH environment variable and
when the program runQaTests.pl is run it explicitly looks in the same directory where it is
located for the perl modules it sources at run time.

The following subroutines are in the modelQaTestRoutines.pm perl module:

processSetup processes test independent information, sets up variables used in the
simulation routines

processTestSpec processes the specific information for each test, sets up variables used in
the simulation routines

readQaSpecFile parses the qaSpec file and sets up generic and test specific information
readHierarchicalFile hierarchically reads files that may have `include directives
processIfDefs Processes conditionals in the qaSpec file
unScale converts from engineering/SPICE number notation to pure numbers
platform Returns computer architecture and operating system information

The perl module provided for each simulator must have the following subroutines defined:

version returns the simulator version
runDcTest runs and returns the results of specified DC tests
runAcTest runs and returns the results of specified AC tests
runNoiseTest runs and returns the results of specified noise tests
generateCommonNetlistInfo (recommended) sets up the model in the simulator netlist

The generateCommonNetlistInfo subroutine is separated for convenience, and is not
mandatory. However, the model set up should be the same for each test, handling the test variants
(polarity, symmetric pin flipping, shrink, scale, multiplicity) needs to be done for every test type, and
duplication of common code is undesirable, hence it is recommended that the test routines be
structured so they call a common routine for generation of the model, as a sub-circuit because this
greatly simplifies implementation of the test variants.

The sub-circuit operates as follows. It contains a single instance of the device, and uses unity gain
voltage-controlled voltage sources (VCVSs) to drive the pins of the device based on the biases
applied to the pins of the sub-circuit. Unity gain current-controlled current sources (CCCSs) are then
used to mirror the currents in the voltage sources to the pins of the sub-circuit.

To check results for polarity reversal (e.g. PMOS compared to NMOS), the sign of the gain of the
VCVSs and CCCSs is flipped. Note that this makes the sign of PMOS voltages and currents the same
as for NMOS. The reason for this is that some simulators print results in fixed width fields, so if one
number has a negative sign in front and another does not, the numbers will be printed to different
numbers of digits of precision. This complicates checking for an exact match of numbers. Note that
for this test to work effectively, a model needs to behave identically for both polarity configurations,
and parameters for which there are different defaults for different polarities need to be set. If a model

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 26 of 27

has conditional code that depends on polarity, and parameters cannot be set so that this code is
inactive, then there is no point applying this test. In this case, separate tests, with different reference
results due to real differences in model evaluations, need to be defined for each polarity.

To check for symmetry pin reversal, the control pins for the VCVSs are interchanged, and similarly
for the CCCSs.

To check for polarity flipping and symmetry pin reversal, both of the previous changes are made.

To check scale or shrink values, if they are supported, simulator options or variables that control
these are set, and model instance parameters are scaled by the inverse of the scale or shrink factors
(or the square of this if the instance parameter is a measure of area).

To check multiplicity, an m-factor is included for the device instance, and the CCCS gains are set to
the inverse of the device instance m-factor. As with the polarity reversal, this guarantees that for
simulators with tightly controlled output printing formats, the numbers should exactly match those of
the standard simulation.

The following shows the sub-circuit that enables easy testing of variants.

In normal operation, V1i=+V1x, I1i=−I(V1i), V2i=+V2x, I2i=−I(V2i) (the negative sign for the current-
controlled current sources is because of the polarity of the current in the voltage-controlled voltage
sources internal to the sub-circuit).

For reversed polarity operation, V1i=-V1x, I1i=+I(V1i), V2i=-V2x, I2i=+I(V2i).

For pin flipped operation, V1i=+V2x, I1i=−I(V2i), V2i=+V1x, I2i=−I(V1i).

For m-factor checking, the internal device instance inside the sub-circuit has the scale factor set to m,
and then V1i=-V1x, I1i=+I(V1i)/m, V2i=-V2x, I2i=+I(V2i)/m. (This is modified for noise simulations

Device

±± ± ±

bias applied
external to
sub-circuit

V1x

V1i

V2x

V2i I1i I2i

© Compact Model Council, 2007 CMC Compact Model QA Specification Release 1.3 Page 27 of 27

where the noise current in A2/Hz is being measured; the current sources are then scaled by 1/sqrt(m)
rather than by 1/m).

For floating pins no polarity reversal or pin flipping or m-factor is applied. The expectation is a
floating pin is a local temperature rise pin, which will not be affected by any of these permutations.

