Publications: All

Search
  1. Thermoelectric Device Compact Model

    2017-03-27 13:46:21 | Compact Models | Contributor(s): Xufeng Wang, Kyle Conrad, Jesse Maassen, Mark Lundstrom | doi:10.4231/D3PN8XG7R

    The NEEDS thermoelectric compact model describes a homogeneous segment of thermoelectric material and serves as a basic building block for complex electrothermal system.
  2. Nano Education Resources

    2017-03-14 15:32:54 | Datasets | Contributor(s): Quinn Spadola, Lisa Friedersdorf | doi:10.4231/D3K35MF70

    This is a database of nanoeducation resources that can be searched, filtered, and sorted. Resources are listed by topic area, grade level, core discipline, STEM content area, and resource type.
  3. MIT Virtual Source Negative Capacitance (MVSNC) model

    2017-03-07 01:06:52 | Compact Models | Contributor(s): Ujwal Radhakrishna, Asif Islam Khan, Sayeef Salahuddin, Dimitri Antoniadis | doi:10.4231/D3K649T9T

    MIT Virtual Source Negative FET (MVSNC) model is a compact model for negative capacitance transistors that use a FE-oxide in the gate stack to achieve internal voltage amplification and steep subthreshold swing.
  4. UARK SiC Power MOSFET Model

    2017-02-23 14:45:14 | Compact Models | Contributor(s): Mihir Mudholkar, Shamim Ahmed, Ramchandra Kotecha, Ty McNutt, Arman Ur Rashid, Tom Vrotsos, Alan Mantooth | doi:10.4231/D3QF8JK88

    A compact model for SiC Power MOSFETs is presented. The model features a physical description of the channel current and internal capacitances and has been validated for dc, CV, and switching characteristics with measured data from C2M0025120D.
  5. nMOSFET RF and noise model on standard 45nm SOI technology

    2017-01-05 16:57:48 | Compact Models | Contributor(s): Yanfei Shen, Saeed Mohammadi | doi:10.4231/D3833N04K

    A compact scalable model suitable for predicting high frequency noise and nonlinear behavior of N-type Metal Oxide Semiconductor (NMOS) transistors is presented.
  6. Optical Ring Modulator ModSpec Compact Model

    2017-01-05 16:54:03 | Compact Models | Contributor(s): Lily Weng, Tianshi Wang | doi:10.4231/D31N7XN9P

    The optical ring modulator presented here is a vertical junction resonant microring/disk modulator which can achieve high modulation speed, lower power consumption and compact size. A Matlab-based ModSpec compact model is developed and simulated.
  7. Flexible Transition Metal Dichalcogenide Field-Effect Transistor (TMDFET) Model

    2016-05-04 03:37:43 | Compact Models | Contributor(s): Morteza Gholipour, Deming Chen | doi:10.4231/D3TM72243

    Verilog-A model of flexible transition metal dichalcogenide field-effect transistors (TMDFETs), considering effects when scaling the transistor size down to the 16-nm technology node.
  8. Physics-Based Compact Model for Dual-Gate Bilayer Graphene FETs

    2016-04-07 19:19:34 | Compact Models | Contributor(s): Jorge-Daniel Aguirre Morales, Sébastien Frégonèse, Chhandak Mukherjee, Cristell Maneux, Thomas Zimmer | doi:10.4231/D30C4SM1H

    A compact model for simulation of Dual-Gate Bilayer Graphene FETs based on physical equations.
  9. Database of The Big Ideas in Nanoscale Science and Engineering (NSTA)

    2016-03-25 20:23:57 | Datasets | Contributor(s): Tanya Faltens | doi:10.4231/D3HH6C69T

    This database lists the 9 Big Ideas of Nanoscale Science and Engineering along with the Learning Goals associated with each Big Idea. Instructors should refer to the NSTA publication, "The Big Ideas of Nanoscale Science & Engineering, A Guidebook for Secondary Teachers" (c) 2009 NSTA Press (156...
  10. Double-Clamped Silicon NEMS Resonators Model

    2016-03-07 16:45:06 | Compact Models | Contributor(s): Yanfei Shen, Scott Calvert, Jeffrey F. Rhoads, Saeed Mohammadi | doi:10.4231/D37659G7N

    This model is built for a silicon-based, double-clamped (source and drain), double-gate beam. The model takes into account capacitive modulation with the two gates, piezoresistive modulation through the beam and electrical parasitic elements.
  11. NISE Net NanoDays Kit Database

    2016-01-22 21:38:38 | Datasets | Contributor(s): Tanya Faltens

    This is a database of NISE Net NanoDays Kits, with links to information about the kits and instructional videos. This database was created in 2014 and there may be some additional content added since then. This database contains all the...
  12. MVS Nanotransistor Model (Silicon)

    2015-12-02 17:03:59 | Compact Models | Contributor(s): Shaloo Rakheja, Dimitri Antoniadis | doi:10.4231/D3RR1PN6M

    The MIT Virtual Source (MVS) model is a semi-empirical compact model for nanoscale transistors that accurately describes the physics of quasi-ballistic transistors with only a few physical parameters.
  13. MVS III-V HEMT model

    2015-12-01 16:40:24 | Compact Models | Contributor(s): Shaloo Rakheja, Dimitri Antoniadis | doi:10.4231/D37S7HT39

    The MIT Virtual Source (MVS) model is a semi-empirical compact model for nanoscale transistors that accurately describes the physics of quasi-ballistic transistors with only a few physical parameters. This model is designed for HEMT.
  14. MVS Nanotransistor Model

    2015-12-01 15:13:44 | Compact Models | Contributor(s): Shaloo Rakheja, Dimitri Antoniadis | doi:10.4231/D3416T10C

    The MIT Virtual Source (MVS) model is a semi-empirical compact model for nanoscale transistors that accurately describes the physics of quasi-ballistic transistors with only a few physical parameters.
  15. CCAM Compact Carbon Nanotube Field-Effect Transistor Model

    2015-10-07 14:56:43 | Compact Models | Contributor(s): Michael Schroter, Max Haferlach, Martin Claus | doi:10.4231/D3VD6P595

    CCAM is a semi-physical carbon nanotube field-effect transistor model applicable for digital, analog and high frequency applications.
  16. Non-Faradaic Impedance-based Biosensor Model

    2015-09-26 14:54:22 | Compact Models | Contributor(s): Piyush Dak, Muhammad A. Alam | doi:10.4231/D3PR7MV7M

    The non-Faradaic impedance model is a physics-based compact model that describes the small-signal operation of a sensor that relies on electrochemical detection of analyte molecules.
  17. Optical Ring Filter (ORF) Modspec Compact Model

    2015-09-24 18:35:26 | Compact Models | Contributor(s): Lily Weng, Tianshi Wang | doi:10.4231/D3125QB06

    The MIT ORF Modspec Compact Model provides a compact model of an optical ring filter on Model and Algorithm Prototyping Platform. It describes transmission behavior of the filter when operating with several hundreds terahertz light signals.
  18. Released Resonant Body Transistor with MIT Virtual Source (RBT-MVS) Model

    2015-08-31 00:00:00 | Compact Models | Contributor(s): Bichoy W. Bahr, Dana Weinstein, Luca Daniel | doi:10.4231/D3VH5CK04

    An RBT is a micro-electromechanical (MEM) resonator with a transistor (FET) incorporated into the resonator structure to sense the mechanical vibrations. This is a fully-featured spice-compatible compact model for fast analysis of RBTs.
  19. MIT Virtual Source GaN HEMT-High Voltage (MVSG-HV) compact model

    2015-08-31 13:49:15 | Compact Models | Contributor(s): Ujwal Radhakrishna, Dimitri Antoniadis | doi:10.4231/D3086365H

    MIT Virtual Source GaN HEMT-High Voltage (MVSG-HV) model is a charge based physical model for HV-GaN HEMTs suitable for power switching applications.
  20. Verilog-A implementation of the compact model for organic thin-film transistors oTFT

    2015-06-16 12:26:13 | Compact Models | Contributor(s): Ognian Marinov | doi:10.4231/D3R785Q3B

    Compact model oTFT supports mobility bias enhancement, contact effects, channel modulation and leakage in organic thin-film transistors. Version 2.04.01 “mirrors” TFT in all regimes of operation by DC, AC and transient simulations.