Publications: All

  1. interconnect x
  1. Berkeley VCSEL Compact Model

    2015-06-02 18:58:52 | Compact Models | Contributor(s): Adair Gerke, Connie J. Chang-Hasnain | doi:10.4231/D3T43J40H

    The U.C. Berkeley Vertical Cavity Surface Emitting Laser (VCSEL) Compact Model provides a circuit simulator compatible Verilog-A model of VCSEL lasers, primarily for use in designing direct-modulation driver circuits for optical interconnects.
  2. CNRS - Carbon Nanotube Interconnect RC Model

    2017-11-09 16:25:31 | Compact Models | Contributor(s): Jie LIANG, Aida Todri | doi:10.4231/D3SJ19T14

    This CNT Interconnect Compact Model includes a solid physics understanding and electrical modeling for pristine and doped SWCNT as Interconnect applications. SWCNT resistance and capacitance are modeled in Verilog-A.
  3. Multi-walled/Single-walled Carbon Nanotube (MWCNT/SWCNT) Interconnect Lumped Compact Model Considering Defects, Contact resistance and Doping impact

    2018-07-18 16:10:04 | Compact Models | Contributor(s): Rongmei Chen, Jie LIANG, Jaehyun Lee, Vihar Georgiev, Aida Todri | doi:10.4231/D3183448N

    In this project, we present SWCNT and MWCNT interconnect compact models. These models consider the impact of CNT defects, the chirality and contact resistance between CNT-electrode (Pd) on CNT interconnect performances and power consumption. Variabilities
  4. UCSB Graphene Nanoribbon Interconnect Compact Model

    2015-04-30 14:25:13 | Compact Models | Contributor(s): Junkai Jiang, Wei Cao, Kaustav Banerjee | doi:10.4231/D34Q7QR19

    UCSB GNR interconnect model is based on a distributed RLC circuit, in which carrier mean free path, graphene doping concentration (Fermi level) and number of layers are considered. The model was originally published by UCSB NRL group.
  5. UCSB Graphene Nanoribbon Interconnect Compact Model

    2017-05-03 21:16:20 | Compact Models | Contributor(s): Junkai Jiang, Kaustav Banerjee, Wei Cao | doi:10.4231/D3NK3663N

    This model describes the circuit-level behavior of the (intercalation) doped GNR interconnect, and is compatible with both DC and transient SPICE simulations.