Silicon Photonics
Opportunity, applications & Recent Results

Dr. Mario Paniccia
Intel Fellow
Director, Photonics Technology Lab
Intel Corporation

www.intel.com/go/sp

Purdue University
Oct 5 2007
Agenda

- Motivation & applications
- History & progress
- Intel’s Research Program
- Future work
- Summary
Photonics Applications

Photonics could impact all of these. But today costs are prohibitive.
Intel co-founder G. Moore predicted doubling of transistors approximately every 2 years (Electronic Magazine, 1965)
SCALING + WAFER SIZE + HIGH VOLUME = LOWER COST

Integration & increased functionality
Tera-leap to Parallelism:

- Instruction level parallelism
- Hyper-Threading
- Dual Core
- Quad-Core

Era of Tera-Scale Computing

More performance Using less energy

The days of single-core chips

10’s to 100’s of cores

All this compute capability may require high speed optical links
Future Physical I/O for a Tera-scale Servers

Core-Core: On Die Interconnect fabric
Memory: Package 3D Stacking
Chip-Chip: Fast Copper FR4 or Flex cables

Tb/s of I/O

Integrated Tb/s Optical Chip?
Moving to Interconnects

Optical

- Chip to Chip
 - 1 – 50 cm

- Board to Board
 - 50 – 100 cm

- Rack to Rack
 - 1 to 100 m

Copper

- Chip to Chip
 - 1 – 50 cm

- Board to Board
 - 50 – 100 cm

Decreasing Distances

Drive optical to high volumes and low costs
Photonics Evolution

What could Integrated Photonics Deliver?
Silicon Photonics

- Motivation & applications
- History & progress
- Intel’s Research Program
- Future work
- Summary
The Opportunity of Silicon Photonics

- Enormous ($ billions) CMOS infrastructure, process learning, and capacity
 - Draft continued investment in Moore’s law
- Potential to integrate multiple optical devices
- Micromachining could provide smart packaging
- Potential to converge computing & communications

To benefit from this optical wafers must run alongside existing product.
Silicon as an Optical Material

- Photon Energy (eV): 2.76, 1.55, 1.1eV, 0.41
- Wavelength (µm): 0.45, 0.8, 1.12µm, 3.0

- Transparent > ~1.1 µm
- High index
- CMOS Compatible
- Low cost material

- Low light emission efficiency
- No electro-optical effect
- No detection in 1.3-1.6 µm

Silicon traditionally NOT optical material of choice

Comms Window
Si Photonics Recent Progress

This is not exhaustive

Device performance making significant advances
Silicon Photonics

- Motivation & applications
- History & progress
- Intel’s Research Program
- Future Work
- Summary
Intel’s Silicon Photonics Research

First: Innovate to prove silicon is a viable optical material
Intel’s Silicon Photonics Research

1) Light Source
- Continuous Wave Silicon Raman Laser (Feb ‘05)
- Electrically Pumped Hybrid Silicon Laser (September 2006)

2) Guide Light
- Waveguides devices

3) Modulation

4) Photo-detection
- SiGe Photodetectors

5) Low Cost Assembly
- Passive Align

6) Intelligence
- CMOS

1 GHz (Feb ‘04)
10 Gb/s (Apr ‘05)
40 Gb/s (Jul ‘07)

40 Gb/s TODAY

Achieved 40 Gb/s for most devices
Next: Focus on integration
Integration Vision

- **First: Prove Silicon good optical material**
- **Next Integration: silicon devices into hybrid modules**
- **Increasing silicon integration over time**
Building Block Research

1) Light Source
2) Guide Light
3) Modulation
4) Photo-detection
5) Low Cost Assembly
6) Intelligence

Waveguides devices

SiGe Photodetectors

CMOS
Guiding Light with Si Waveguides

Ex: Rib waveguide

- Proven area for silicon
- High index = small structures
 - Strip and Photonic crystals for further scaling
- Splitters, couplers, gratings, AWGs, MMIs have all been demonstrated

Continue to reduce size while maintaining performance
Options for Integrating Light Sources

Hybrid Silicon Laser
- Bond InP based material to Silicon
- No alignment
- Many lasers with one bonding step
- Amenable to high integration
- Potentially lowest cost

Direct Attached Laser
- Tight alignment tolerances
- Requires gold metal bonding
- Passive alignment challenges
- Less Expensive

Off-chip Laser
- High power laser required
- Requires fiber attach
- Non-integrated solution
- Expensive
Hybrid Silicon Laser
Collaboration with UCSB

• The Indium Phosphide emits the light into the silicon waveguide

• The silicon acts as laser cavity:
 • Silicon waveguide routes the light
 • End Facets or gratings are reflectors/mirrors
 • Light bounces back and forth and gets amplified by InP based material
 • Laser performance determined by Silicon waveguide

No alignment needed
10’s if not 100’s of lasers with ONE bond
Hybrid Laser Process

1) A waveguide is etched in silicon

2) The Indium phosphide is processed to make it a good light emitter

3) Both materials are exposed to the oxygen plasma to form the “glass-glue”

4) The two materials are bonded together under low heat
5) The Indium phosphide is etched and electrical contacts are added

6) Photons are emitted from the Indium Phosphide when a voltage is applied

7) The light is coupled into the silicon waveguide which forms the laser cavity. Laser light emanates from the device.
Hybrid Laser Structure

SEM (Scanning Electron Microscope) Photograph
Silicon Hybrid Laser

7 lasers outputting simultaneously
Modulation

- Direct or External modulation
- External used for 10G at ~12km+

Direct Modulation

External Modulation

No electro-optic effect
use free carriers
Intel’s Second Generation: Silicon Modulator

- Based on traveling wave design
- Optimized optical & electrical RF

SEM picture of p-n phase shifter
Recent Results: 40Gb/s Data Transmission

40Gb/s Data Transmission

Optical 3 dB roll off ~30 GHz
Photodetection

- Silicon does not absorb IR well
- Using SiGe to extend to 1.3\(\mu\)m+
- Must overcome lattice mismatch

Bulk Films of Si and Ge

Strained Si\(_{1-x}\)Ge\(_x\) on Si

Relaxed Si\(_{1-x}\)Ge\(_x\) on Si

Misfit dislocations typically create threading dislocations which degrade device performance - dark current (\(I_{\text{dark}}\)) goes up.

Must simultaneously achieve required speed, responsivity, & dark current.
Waveguide Photodetector Design

Top View

SEM Cross-Section

SEM Cross-Section
Experimental Results: 40Gb/s
Presented Sept 20th: Group IV conference Tokyo Japan

31 GHz Optical Bandwidth
40 Gb/s Data transmission

95% efficient (up to $\lambda \sim 1.56\mu m$)
< 200nA of dark current
Low Cost Assembly

Use passive alignment and lithographically defined silicon micromachining
Challenge: Packaging

Example: Optical Interface

Package topside Connection? Monolithic Integration? Unlikely

Board connection?

Issues: Connector cost, assembly cost, testing, reliability and compatibility with existing electrical packages

Multiple approaches. Must balance performance, flexibility and feasibility
CMOS Intelligence

- Electronics are needed to control photonics – no optical logic
 - Transimpedance & Limiting Amplifiers for photodetection
 - Drivers for lasers/modulators
 - Also Clock Data Recovery, Serializers/Deserializers, etc.

Use hybrid attached CMOS electronics. Explore monolithic integration over time
Integration: Hybrid?

Photonics and electronics processed separately

10 Gbps electronics could use < 0.13µm while optics may use older gen. process. Attachment via bumps or wirebonds.

Integration of passive and active silicon devices reduces assembly & cost.

External III-Vs: require coupling and alignment (vertical & horizontal) or direct wafer bonding to waveguides.

Both monolithic and hybrid chips will need to couple light to the outside world.

Hybrid will offer the best price-performance near term
Integration: Monolithic?

Photonics and electronics processed together on a single wafer

- **Motivations:**
 - Performance, e.g. a Photodetector with a Trans-impedance amp
 - Reduced form factor
 - Cost?

- **But many challenges** for achieving high yield:
 Tighten thermal budgets, topology, metrology, complexity, etc.

Yield issues make monolithic a longer term proposition
Silicon Photonics

- Motivation & applications
- History & progress
- Intel’s Research Program
- Future Work
- Summary
Where are we going?

- 25 hybrid lasers
- 25 modulators at 40Gb/s
- Optical Fiber
- Multiplexor

An future integrated 1 Tb/s optical link on a single chip
Integrating into a Tera-scale System

This transmitter would be combined with a receiver

Which could then be built into an integrated, silicon photonic chip!!
Integrating into a Tera-scale System

This integrated silicon photonic chip could then be integrated into computer boards.

And this board could be integrated into a Tera-scale system.
Summary

• Long term, convergence opportunities will be in silicon
• Silicon photonic device performance advancing at an accelerated pace.
 – Need to continue to push performance (i.e. 40G, 100G...)
• Next phase of challenges will be with integration.
• For interconnects, need to optimize electronics & photonics
 – Packaging, power, signaling, and cost will be key

If successful volume economics could allow silicon photonics to impact many areas from communications to bio to medicine
Questions
Questions
Questions