Support

Support Options

Submit a Support Ticket

 

Nanotechnology 501 Lecture Series

By Gerhard Klimeck (editor)1, Mark Lundstrom (editor)1, Joseph M. Cychosz (editor)1

1. Purdue University

In This Series

  1. Plasmonic Nanophotonics: Coupling Light to Nanostructure via Plasmons

    03 Oct 2005 | Online Presentations | Contributor(s): Vladimir M. Shalaev

    The photon is the ultimate unit of information because it packages data in a signal of zero mass and has unmatched speed. The power of light is driving the photonicrevolution, and information technologies, which were formerly entirely electronic, are increasingly enlisting light to communicate...

  2. On the Reliability of Micro-Electronic Devices: An Introductory Lecture on Negative Bias Temperature Instability

    28 Sep 2005 | Online Presentations | Contributor(s): Muhammad A. Alam

    In 1930s Bell Labs scientists chose to focus on Siand Ge, rather than better known semiconductors like Ag2S and Cu2S, mostly because of their reliable performance. Their choice was rewarded with the invention of bipolar transistors several years later. In 1960s, scientists at Fairchild worked...

  3. Designing Nanocomposite Thermoelectric Materials

    08 Nov 2005 | Online Presentations | Contributor(s): Timothy D. Sands

    This tutorial reviews recent strategies for designing high-ZT nanostructured materials, including superlattices, embedded quantum dots, and nanowire composites. The tutorial highlights the challenges inherent to coupled electronic and thermal transport properties.

  4. Nanoparticle Synthesis and Assembly for Biological Sensing

    25 Oct 2005 | Online Presentations | Contributor(s): Gil Lee

    Nanoparticles have unique physical and chemical properties that make them very useful for biological and chemical sensing. For example, colloidal gold has been used as an optical transducer for antibody based sensing for over twenty years and is the basis for a many of the point-of-use...

  5. Simple Theory of the Ballistic MOSFET

    11 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    Silicon nanoelectronics has become silicon nanoelectronics, but we still analyze, design, and think about MOSFETs in more or less in the same way that we did 30 years ago. In this talk, I will describe a simple analysis of the ballistic MOSFET. No MOSFET is truly ballistic, but approaching this...

  6. Nano-Scale Device Simulations Using PROPHET

    20 Jan 2006 | Online Presentations | Contributor(s): Yang Liu, Robert Dutton

    These two lectures are aimed to give a practical guide to the use of ageneral device simulator (PROPHET) available on nanoHUB. PROPHETis a partial differential equation (PDE) solver that offers usersthe flexibility of integrating new models and equations for theirnano-device simulations. The...

  7. Engineering Nanomedical Systems

    06 Mar 2006 | Online Presentations | Contributor(s): James Leary

    This tutorial discusses general problems and approaches to the design of engineered nanomedical systems. One example given is the engineering design of programmable multilayered nanoparticles (PMNP) to control a multi-sequence process of targeting to rare cells in-vivo, re-targeting to...

  8. Understanding Phonon Dynamics via 1D Atomic Chains

    04 Apr 2006 | Online Presentations | Contributor(s): Timothy S Fisher

    Phonons are the principal carriers of thermal energy in semiconductors and insulators, and they serve a vital role in dissipating heat produced by scattered electrons in semiconductor devices. Despite the importance of phonons, rigorous understanding and inclusion of phonon dynamics in...

  9. A Primer on Scanning Tunneling Microscopy (STM)

    04 Apr 2006 | Online Presentations | Contributor(s): Ron Reifenberger

    Scanning Probe Microscopes and their remarkable ability to provide three-dimensional maps of surfaces at the nanometer length scale have arguably been the most important tool in establishing the world-wide emergence of Nanotechnology. In this talk, the fundamental ideas behind the first scanning...

  10. MATLAB DOs and DON'Ts

    14 May 2006 | Online Presentations | Contributor(s): Dmitri Nikonov

    Matlab is widely used for simulations but is believed to be unsuitable for complex projects and to produce slow-running software tools. The presentation argues that blind copying of methods typical of C and Fortran is responsible for such inefficiencies; the presentation teaches avoidance of...

  11. Design of CMOS Circuits in the Nanometer Regime: Leakage Tolerance

    28 Nov 2006 | Online Presentations | Contributor(s): Kaushik Roy

    The scaling of technology has produced exponential growth in transistor development and computing power in the last few decades, but scaling still presents several challenges. These two lectures will cover device aware CMOS design to address power, reliability, and process variations in scaled...

  12. A Primer on Quantum Computing

    18 Oct 2006 | Online Presentations | Contributor(s): David D. Nolte

    Quantum computers would represent an exponential increase in computing power...if they can be built. This tutorial describes the theoretical background to quantum computing, its potential for several specific applications, and the demanding challenges facing practical implementation. The field...

  13. Scientific Ethics and the Signs of Voodoo Science

    18 Oct 2006 | Online Presentations | Contributor(s): Andrew S. Hirsch

    Until recently, the issue of research ethics had not been a subject of explicit discussion within the Physics community. Over the past ten years, however, documented cases of scientific fraud have brought this issue to center stage. We will explore, through case studies, some examples ranging...

  14. Geometry of Diffusion and the Performance Limits of Nanobiosensors

    05 Dec 2006 | Online Presentations | Contributor(s): Muhammad A. Alam, Pradeep R. Nair

    This presentation demonstrates how the classical diffusion-capture (D-C) model has improved sensor performance, since the D-C model is a "geometry of diffusion" rather than a "geometry of electrostatics." A scaling law based on D-C is also posited; the scaling law resolves many classical puzzles...

  15. RF MEMS: Passive Components and Architectures

    02 Jan 2007 | Online Presentations | Contributor(s): Dimitrios Peroulis

    This seminar is an introduction to the MEMS technology as itapplies to RF and Microwave systems. Besides discussing several key RFMEMS components (switches, varactors, inductors), reconfigurable circuitarchitectures will also be introduced. In addition, reliability and costconsiderations as...

  16. CQT: Concepts of Quantum Transport

    30 Nov 2006 | Courses | Contributor(s): Supriyo Datta

    Note: For an expanded version of these lectures see Datta's 2008 NCN@Purdue Summer School presentations onNanoelectronics and the Meaning of Resistance.How does the resistance of a conductor change as we shrink its length all the way down to a few atoms? This is a question that has intrigued...

  17. Materials strength: does size matter? nanoMATERIALS simulation toolkit tutorial

    01 Feb 2007 | Online Presentations | Contributor(s): Alejandro Strachan

    Molecular dynamics (MD) is a powerful technique to characterize the fundamental, atomic-level processes that govern materials behavior and is playing an important role in our understanding of the new phenomena that arises in nanoscale and nanostructured materials and result in their unique...

  18. Is Seeing Believing? How to Think Visually and Analyze with Both Your Eyes and Brain

    26 Mar 2007 | Online Presentations | Contributor(s): David Ebert

    This presentation will cover the basic techniques, and some of the available tools, for visualization, and will explain how to avoid miscommunicating information from visualizations.

  19. Nanoscale Antenna Apertures

    24 Apr 2007 | Online Presentations | Contributor(s): Xianfan Xu

    This presentation will discuss light concentration and enhancement in nanometer-scale ridge aperture antennas. Resent research, including numerical simulations and near field optical measurements has demonstrated that nanoscale ridge antenna apertures can concentrate light into nanometer domain....

  20. Solid-State Lighting: An Opportunity for Nanotechnologists to Address the Energy Challenge

    25 Apr 2007 | Online Presentations | Contributor(s): Timothy D. Sands

    More than one-fifth of the electrical power consumed in the U.S. is used for general illumination. Much of this energy is wasted to heat filaments in incandescent lamps, a century-old technology with an efficiency of about 5%. Fluorescent lighting is more efficient, but problems of color...

  21. SPMW The Nanomechanics of compositional mapping in amplitude modulation AFM

    05 Jan 2007 | Online Presentations | Contributor(s): Ricardo Garcia

    Amplitude modulation atomic force microscopy (AM-AFM) has been very successful for imaging with high spatial resolution inorganic as well as soft materials such as polymers, living cells and single biomolecules in their natural environment [1]. The ability of AM-AFM to separate topography from...

  22. Introduction to X-ray Photoelectron Spectroscopy and to XPS Applications

    17 May 2007 | Online Presentations | Contributor(s): Dmitry Zemlyanov

    X-ray Photoelectron Spectroscopy (XPS), which is known as Electron Spectroscopy for Chemical Analysis (ESCA), is a powerful research tool for the study of the surface of solids. The technique is widely used for studies of the properties of atoms, molecules, solids, and surfaces. The main success...

  23. Nanodevices: A Bottom-up View

    13 Jun 2005 | Online Presentations | Contributor(s): Supriyo Datta

    It is common to differentiate between two ways of building a nanodevice: a top-down approach where we start from something big and chisel out what we want and a bottom-up approach where we start from something small like atoms or molecules and assemble what we want.

  24. The Long and Short of Pick-up Stick Transistors: A Promising Technology for Nano- and Macro-Electronics

    11 Apr 2006 | Online Presentations | Contributor(s): Muhammad A. Alam

    In recent years, there has been enormous interest in the emerging field of large-area macro-electronics, and fabricating thin-film transistors on flexible substrates. This talk will cover recent work in developing a comprehensive theoretical framework to describe the performance of these...

  25. First Principles-based Atomistic and Mesoscale Modeling of Materials

    01 Dec 2005 | Online Presentations | Contributor(s): Alejandro Strachan

    This tutorial will describe some of the most powerful and widely used techniques for materials modeling including i) first principles quantum mechanics (QM), ii) large-scale molecular dynamics (MD) simulations and iii) mesoscale modeling, together with the strategies to bridge between them....

  26. Nanosystems Biology

    10 Sep 2004 | Online Presentations | Contributor(s): James R. Heath

    As we enter the 21st century, we stand at a major inflection point for biology and medicine-the way we view and practice these disciplines is changing profoundly. These changes are being driven by systems biology, a new approach to biology, and which will increasingly transform medicine from...

  27. Making the Tiniest and Fastest Transistor using Atomic Layer Deposition (ALD)

    13 Feb 2006 | Online Presentations | Contributor(s): Peide "Peter" Ye

    Atomic layer deposition (ALD) is an emerging nanotechnology enables the deposit ofultrathin films, one atomic layer by one atomic layer. ALD provides a powerful, new capability to grow or regrow nanoscale ultrathin films of metals, semiconductors and insulators. This presentation introduces ALD...

  28. Semiconductor Interfaces at the Nanoscale

    17 Oct 2005 | Online Presentations | Contributor(s): David Janes

    The trend in downscaling of electronic devices and the need to add functionalities such as sensing and nonvolatile memory to existing circuitry dictate that new approaches be developed for device structures and fabrication technologies. Various device technologies are being investigated,...

  29. Bandstructure in Nanoelectronics

    01 Nov 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material needs to be included in the device modeling. Atomistic bandstructure effects in resonant tunneling...

  30. Switching Energy in CMOS Logic: How far are we from physical limit?

    24 Apr 2006 | Online Presentations | Contributor(s): Saibal Mukhopadhyay

    Aggressive scaling of CMOS devices in technology generation has resulted in exponential growth in device performance, integration density and computing power. However, the power dissipated by a silicon chip is also increasing in every generation and emerging as a major bottleneck to technology...

  31. Bionanotechnology: a different perspective

    30 Apr 2008 | Online Presentations | Contributor(s): Murali Sastry

    The study of the synthesis, exotic properties, assembly/packaging and potential commercial application of nanomaterials is an extremely important topic of research that is expected to have far-reaching global impact. The focus of my talk will be on an emerging branch of nanotechnology that...

  32. C.V. Raman and the Impact of Raman Effect in Quantum Physics, Condensed Matter, and Materials Science

    18 Sep 2008 | Online Presentations | Contributor(s): Anant K. Ramdas

    Raman’s momentous discovery in 1928 that the spectral analysis of the light scattered by matter, illuminated with monochromatic light of frequency ωL, reveals new signatures at (ωL ± ωi) , ωi’s being the internal frequencies of the matter [Nature121, 501 (1928); Indian Journal of Physics 2, 387...

  33. SUGAR: the SPICE for MEMS

    21 May 2007 | Online Presentations | Contributor(s): Jason Clark

    In this seminar, I present some design, modeling, and simulation features of a computer aided engineering tool for microelectromechanical systems (MEMS) called SUGAR. For experimental verification, I use a microdevice that is difficult to simulate with conventional MEMS software. I show that the...

  34. Design in the Nanometer Regime: Process Variation

    28 Nov 2006 | Online Presentations | Contributor(s): Kaushik Roy

    Scaling of technology over the last few decades has produced an exponential growth in computing power of integrated circuits and an unprecedented number of transistors integrated into a single. However, scaling is facing several problems — severe short channel effects, exponential increase in...

  35. What is "Nanofluidics"? or The Nano-izing of Fluid Mechanics

    28 Jun 2006 | Online Presentations | Contributor(s): Steve Wereley

    Micro- and nanoscaled fluid mechanics are rapidly emerging as important supporting fields in biomedical technology, nanotechnology, etc., as well as being important fields of study in their own right. Despite the common use of these terms in the literature, the fluid behavior at these small...

  36. Electrons in Two Dimensions: Quantum Corrals and Semiconductor Microstructures

    04 Dec 2007 | Online Presentations | Contributor(s): Eric J. Heller

    The images generated by a scanning tunneling microscope are iconic. Some of the most famous are Don Eigler’s quantum corrals, which reveal not only the guest atoms on a surface but especially the interference patterns of electrons shuttling back and forth along the surface. To understand the...

  37. Thermal Microsystems for On-Chip Thermal Engineering

    04 Apr 2006 | Online Presentations | Contributor(s): Suresh V. Garimella

    Electro-thermal co-design at the micro- and nano-scales is critical for achieving desired performance and reliability in microelectronic circuits. Emerging thermal microsystems technologies for this application area are discussed, with specific examples including a novel micromechanical...

  38. Emerging Opportunities, Challenges, and Applications in Exascale Computing

    10 Mar 2011 | Online Presentations | Contributor(s): Ananth Grama

    The move towards exascale computing platforms (capable of 10^18 floating point operations) poses tremendous challenges, while presenting opportunities for foundational advances in a variety of application domains. In this talk, I will describe various technical issues that must be overcome to...

  39. An Introduction to Quantum Computing

    12 Sep 2008 | Online Presentations | Contributor(s): Edward Gerjuoy

    Quantum mechanics, as formulated more than 80 years ago by Schrodinger, Heisenberg, Dirac and other greats, is a wholly sufficient foundation for its modern interrelated subfields of quantum computation (qc) and quantum information (qi), which generally are lumped together into a single subfield...

  40. Toward Improving the Precision of Nanoscale Force-Displacement Measurements

    13 Mar 2007 | Online Presentations | Contributor(s): Jason Clark

    Nanotechnology has great potential for being used to create better medicines, materials, and sensors. With increasing interest in nanotechnology to improve the quality of our lives, there has been an increasing use of nanoscience tools to measure force and displacement to understand nanoscale...

  41. Introduction to Quantum Dot Lab

    31 Mar 2008 | Online Presentations | Contributor(s): Sunhee Lee, Hoon Ryu, Gerhard Klimeck

    The nanoHUB tool "Quantum Dot Lab" allows users to compute the quantum mechanical "particle in a box" problem for a variety of differentconfinement shapes, such as boxes, ellipsoids, disks, and pyramids. Users can explore, interactively, the energy spectrum and orbital shapes of new quantized...

  42. Quantum Corrections for Monte Carlo Simulation

    05 Jan 2006 | Online Presentations | Contributor(s): Umberto Ravaioli

    Size quantization is an important effect in modern scaled devices. Due to the cost and limitations of available full quantum approaches, it is appealing to extend semi-classical simulators by adding corrections for size quantization. Monte Carlo particle simulators are good candidates, because a...

  43. A Primer on Semiconductor Device Simulation

    23 Jan 2006 | Online Presentations | Contributor(s): Mark Lundstrom

    Computer simulation is now an essential tool for the research and development of semiconductor processes and devices, but to use a simulation tool intelligently, one must know what's "under the hood." This talk is a tutorial introduction designed for someone using semiconductor device simulation...

  44. Writing Modern Technical English

    24 Nov 2009 | Online Presentations | Contributor(s): James T. Keating

    Mr. Keating will discuss the correct approach and methods to use when writing technical papers in English. He will emphasize style and usage, covering several difficult issues that ESL (English as a Second Language) writers often encounter. Among them will be inconsistencies, simplicity,...

  45. Einstein/Bohr Debate and Quantum Computing

    10 May 2005 | Online Presentations | Contributor(s): Karl Hess

    This presentation deals with the Einstein/Bohr Debate and Quantum Computing.

  46. Addressing Molecular Dynamics Time-scale Issues to Study Atomic-scale Friction

    12 Oct 2010 | Online Presentations | Contributor(s): Ashlie Martini

    This presentation will include an introduction to several accelerated molecular dynamics methods. However, particular focus will be given to parallel replica (ParRep) dynamics in which atomistic simulations are run parallel in time to extend their total duration. The ParRep method is based on...

  47. Hierarchical Physical Models for Analysis of Electrostatic Nanoelectromechanical Systems (NEMS)

    05 Jan 2006 | Online Presentations | Contributor(s): Narayan Aluru

    This talk will introduce hierarchical physical models and efficient computational techniques for coupled analysis of electrical, mechanical and van der Waals energy domains encountered in Nanoelectromechanical Systems (NEMS). Numerical results will be presented for several silicon...

  48. Electron and Ion Microscopies as Characterization Tools for Nanoscience and Nanotechnology

    27 Feb 2006 | Online Presentations | Contributor(s): Eric Stach

    This tutorial presents a broad overview of the basic physical principles of techniques used in scanning electron microscopy (SEM), as well as their application to understanding processing/structure/property relationships in nanostructured materials. Special emphasis is placed on the capabilities...

  49. An Introduction to BioMEMS and Bionanotechnology

    07 Feb 2005 | Courses | Contributor(s): Rashid Bashir

    This lecture series introduces the basic concepts and key topics underlying the interdisciplinary areas of BioMEMS and Bionanotechnology. Advances in this field require the knowledge of polymer processing and soft lithography in addition to knowledge of silicon-inspired fabrication. Since the...

  50. Electron Emission from Nanoscale Carbon Materials

    15 May 2007 | Online Presentations | Contributor(s): Timothy S Fisher

    Prior studies on electron emission show possibly beneficial effects ofnanoscale phenomena on energy-conversion characteristics. For example,recent work has shown that the electric field around a nanoscale fieldemission device can increase the average energy of emitted electrons. Weconsider here...

  51. Nanotechnology: Silicon Technology, Bio-molecules and Quantum Computing

    13 May 2005 | Online Presentations | Contributor(s): Karl Hess

    Nanotechnology: Silicon Technology, Bio-molecules and Quantum Computing

  52. Parallel Computing for Realistic Nanoelectronic Simulations

    12 Sep 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    Typical modeling and simulation efforts directed towards the understanding of electron transport at the nanometer scale utilize single workstations as computational engines. Growing understanding of the involved physics and the need to model realistically extended devices increases the...

  53. Nano Carbon: From ballistic transistors to atomic drumheads

    14 May 2008 | Online Presentations | Contributor(s): Paul L. McEuen

    Carbon takes many forms, from precious diamonds to lowly graphite. Surprisingly, it is the latter that is the most prized by nano physicists. Graphene, a single layer of graphite, can serve as an impenetrable membrane a single atom thick. Rolled up into a nanometer-diameter cylinder--a carbon...

  54. Dripping, Jetting, Drops and Wetting: the Magic of Microfluidics

    13 Jun 2007 | Online Presentations | Contributor(s): David A. Weitz

    This talk will discuss some of the new opportunities That arises by precisely controlling fluid flow and mixing using microfluidicdevices. I describe studies to elucidate mechanisms of drop formation and use these to create new fluid structures that are difficult to achieve with my other method....

  55. The Bardeen Transfer Hamiltonian Approach to Tunneling and its Application to STM/Carbon Nanotubes

    05 May 2004 | Online Presentations | Contributor(s): Peter Albrecht, Kyle Ritter, Laura Ruppalt

    This presentation covers the Bardeen Transfer Hamiltonian approach to tunneling and its application to STM/carbon nanotubes.

  56. Atomic Force Microscopy

    01 Dec 2005 | Online Presentations | Contributor(s): Arvind Raman

    Atomic Force Microscopy (AFM) is an indispensible tool in nano science for the fabrication, metrology, manipulation, and property characterization of nanostructures. This tutorial reviews some of the physics of the interaction forces between the nanoscale tip and sample, the dynamics of the...

  57. Engineering Nanomedical Systems

    16 Nov 2007 | Online Presentations | Contributor(s): James Leary

    This tutorial will cover general problems and approaches to the design of engineered nanomedical systems. An example to be covered is the engineering design of programmable multilayered nanoparticles (PMNP) to control a multi-sequence process of targeting to rare cells in-vivo, re-targeting to...

  58. Modeling and Simulation of Sub-Micron Thermal Transport

    26 Sep 2005 | Online Presentations | Contributor(s): Jayathi Murthy

    In recent years, there has been increasing interest in understanding thermal phenomena at the sub-micron scale. Applications include the thermal performance of microelectronic devices, thermo-electric energy conversion, ultra-fast laser machining and many others. It is now accepted that...

  59. NEMO 1-D: The First NEGF-based TCAD Tool and Network for Computational Nanotechnology

    28 Dec 2004 | Online Presentations | Contributor(s): Gerhard Klimeck

    Nanotechnology has received a lot of public attention since U.S. President Clinton announced the U.S.National Nanotechnology Initiative. New approaches to applications in electronics, materials,medicine, biology and a variety of other areas will be developed in this new multi-disciplinary...

  60. Your Career Choices after Graduate School and The Most-Neglected Item in your Career Development

    23 Oct 2009 | Online Presentations | Contributor(s): Gerhard Klimeck

    What are your career choices after graduate school? Will you develop technology yourself? Will you work in a team? Will you guide people? Where will you work: in industry, research lab, or academia? Regardless where you work, there is generally one item that you are not being taught in graduate...

  61. Aluminum: a safe, economical, high energy density material for energy storage, transport and splitting water to make hydrogen on demand

    29 Mar 2009 | Online Presentations | Contributor(s): Jerry M. Woodall

    In 1968, a team lead by the author discovered that liquid gallium saturated with aluminum at room temperature would split water into hydrogen gas, alumina and heat. More recently his current team has discovered that bulk, solid Al rich alloys will also split water in the same manner. Since 1)...

  62. Exploring Electron Transfer with Density Functional Theory

    11 Jun 2006 | Online Presentations | Contributor(s): Troy Van Voorhis

    This talk will highlight several illustrative applications of constrained density functionaltheory (DFT) to electron transfer dynamics in electronic materials. The kinetics of thesereactions are commonly expressed in terms of well known Marcus parameters (drivingforce, reorganization energy and...

  63. Heat Transfer across Solid Contacts Enhanced with Nanomaterials

    11 Feb 2008 | Online Presentations | Contributor(s): Timothy S Fisher

    This presentation will describe thermal transport processes at solid-solid material interfaces. An overview of applications in the electronics industry will serve to motivate the subject, and then the basic diffusive constriction theory will be developed. The addition of carbon nanotube arrays...

  64. Metamaterials: A New Paradigm of Physics and Engineering

    01 May 2008 | Courses | Contributor(s): Vladimir M. Shalaev

    Three part lecture on metamaterials. Metamaterials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials, thus enabling a family of new “meta-devices”. In these three lectures, we review this new emerging...

  65. Nanoelectronic Modeling: Multimillion Atom Simulations, Transport, and HPC Scaling to 23,000 Processors

    07 Mar 2008 | Online Presentations | Contributor(s): Gerhard Klimeck

    Future field effect transistors will be on the same length scales as “esoteric” devices such as quantum dots, nanowires, ultra-scaled quantum wells, and resonant tunneling diodes. In those structures the behavior of carriers and their interaction with their environment need to be fundamentally...

  66. Basics of Particle Adhesion

    21 May 2008 | Online Presentations | Contributor(s): Stephen P. Beaudoin

    This presentation will describe the adhesion of rough, asymmetric particles with micro- to nano-scale dimension to solid surfaces. These adhesion processes are of great interest in microelectronics and pharmaceutical manufacturing. The presentation will include experimental and theoretical and...

  67. Molecular Interferometry

    26 Jun 2007 | Online Presentations | Contributor(s): David D. Nolte

    While single-molecule detection through fluorescence has now become common-place, there has been no analogous single-molecule capability using direct detection approaches such as interferometry. This limitation is slowly yielding to high-speed interferoemtric detection that is pushing the...

  68. Nanometrology Room Design: The Performance and Characterization of the Kevin G. Hall Nanometrology Laboratory

    22 Jan 2008 | Online Presentations | Contributor(s): Ron Reifenberger

    This seminar summarizes the capabilities of the high accuracy Kevin G. Hall Laboratory which is located in Purdue’s newly completed Birck Nanotechnology Center. The seminar is primarily intended for anyone interested in designing, building and characterizing a high accuracy room for nanoscience...

  69. Quantum and Thermal Effects in Nanoscale Devices

    18 Sep 2008 | Online Presentations | Contributor(s): Dragica Vasileska

    To investigate lattice heating within a Monte Carlo device simulation framework, we simultaneously solve the Boltzmann transport equation for the electrons, the 2D Poisson equation to get the self-consistent fields and the hydrodynamic equations for acoustic and optical phonons. The phonon...

  70. X-ray Diffraction and Reflectivity Analysis of Thin Films and Nanomaterials

    02 Dec 2009 | Online Presentations | Contributor(s): Mauro Sardela

    A review of x-ray analysis techniques applied to the characterization of nanomaterials will be presented with focus on x-ray lab source instrumentation similar to the facilities available at the Birck Nanotechnology Center. Practical aspects of data acquisition and interpretation using x-ray...

  71. Basic Rules of Protein Folding

    31 Dec 2008 | Online Presentations | Contributor(s): Seth Lichter

    How are proteins made? Inside cells, messenger RNA first instructs the ribosomes as to the order which amino acids should be joined together. Linked together and released from the ribosome, the protein is not functional. It now needs to fold into a precise three-dimensional shape. There are no...

  72. Resonant Tunneling of Electrons: Application of Electromagnetic Concepts to Quantum Mechanic Phenomena

    14 Apr 2005 | Online Presentations | Contributor(s): Greg H. Huff, Kevin Hietpas

  73. Nucleic Acids

    07 May 2007 | Online Presentations | Contributor(s): Don Bergstrom

    Living organisms are self-assembling systems that achieve an enormous variety of functions through organization of components from sub-nanometer to meter scale. Understanding the functions of these systems must start with a study of the molecular components, their structures and interactions. By...

  74. Ionic Selectivity in Channels: complex biology created by the balance of simple physics

    05 Jun 2008 | Online Presentations | Contributor(s): Bob Eisenberg

    An important class of biological molecules—proteins called ionic channels—conduct ions (like Na+ , K+ , Ca2+ , and Cl− ) through a narrow tunnel of fixed charge (‘doping’). Ionic channels control the movement of electric charge and current across biological membranes and so play a role in...

  75. Dynamics on the Nanoscale: Time-domain ab initio studies of quantum dots, carbon nanotubes and molecule-semiconductor interfaces

    31 Jan 2008 | Online Presentations | Contributor(s): Oleg Prezhdo

    Device miniaturization requires an understanding of the dynamical response of materials on the nanometer scale. A great deal of experimental and theoretical work has been devoted to characterizing the excitation, charge, spin, and vibrational dynamics in a variety of novel materials, including...

  76. Metal Oxide Nanowires as Gas Sensing Elements: from Basic Research to Real World Applications

    21 Sep 2009 | Online Presentations | Contributor(s): Andrei Kolmakov

    Quasi 1-D metal oxide single crystal chemiresistors are close to occupy their specific niche in the real world of solid state sensorics. Potentially, the major advantage of this kind of sensors with respect to available granular thin film sensors will be their size and stable, reproducible and...

  77. From density functional theory to defect level in silicon: Does the “band gap problem” matter?

    01 Oct 2008 | Online Presentations | Contributor(s): Peter A. Schultz

    Modeling the electrical effects of radiation damage in semiconductor devices requires a detailed description of the properties of point defects generated during and subsequent to irradiation. Such modeling requires physical parameters, such as defect electronic levels, to describe carrier...

  78. Exploring CMOS-Nano Hybrid Technology in Three Dimensions

    31 Mar 2008 | Online Presentations | Contributor(s): Wei Wang

    CMOS-nano hybrid technology incorporate the advantages of both traditional CMOS and novel nanowire/nanotube structures, which will enhance future IC performances and create long-term breakthroughs. The CMOS-nano hybrid IC can be efficiently fabricated using the 3D integration approach. This talk...

  79. Engineering at the nanometer scale: Is it a new material or a new device?

    06 Nov 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    This seminar will overview NEMO 3D simulation capabilities and its deployment on the nanoHUB as well as an overview of the nanoHUB impact on the community.

  80. Renormalization Group Theories of Strongly Interacting Electronic Structure

    20 Apr 2007 | Online Presentations | Contributor(s): Garnet Chan, NCN SLC@Northwestern

    Our work is in the area of the electronic structure and dynamics of complex processes. We engage in developing new and more powerful theoretical techniques which enable us to describe strong electronic correlation problems.Of particular theoretical interest are the construction of fast...

  81. Three-Dimensional Photonic Crystals

    11 Feb 2008 | Online Presentations | Contributor(s): Minghao Qi

    A photonic crystal (PhCs) is typically a composite of a high-dielectric-constant material (e.g. Si) and a low-constant one (e.g. SiO2 or air), arranged periodically in space. Two dimensional examples include a hexagonal lattice of air holes drilled in a Si slab, or a set of Si rods at square...

  82. Orbital Mediated Tunneling in a New Unimolecular Rectifier

    25 May 2007 | Online Presentations | Contributor(s): Robert Metzger, NCN SLC@Northwestern

    In 1997 we showed that hexadecylquinolinium tricyanoquinodimethanide is a unimolecular rectifier, by scanning tunneling microscopy and also as a Langmuir-Blodgett (LB) monolayer, sandwiched between Al electrodes. We have now seen rectification in a new molecule: this rectification can be...

  83. Calculating Resonances Using a Complex Absorbing Potential

    13 Mar 2008 | Online Presentations | Contributor(s): Robin Santra

    The Siegert (or Gamow) wave function associated with a resonance state is exponentially divergent at large distances from the scattering target. A complex absorbing potential (CAP) provides a computationally simple and efficient technique for calculating the complex Siegert energy of a resonance...

  84. Plastic Deformation at Micron and Submicron Scales

    28 Nov 2007 | Online Presentations | Contributor(s): Marisol Koslowski

    Most people experiences the way objects plastically deform on a macroscopic scale. From a car crash to the bending of a paper clip plastic deformation occurs in the form of a smooth flow as a response of an applied stress. But due to the constant shrinking on the dimensions of mechanical devices...

  85. Lectures on Molecular Dynamics Modeling of Materials

    09 Jan 2008 | Courses | Contributor(s): Alejandro Strachan

    Molecular dynamics simulations are playing an increasingly important role in many areas of science and engineering, from biology and pharmacy to nanoelectronics and structural materials. Recent breakthroughs in methodologies and in first principles-based interatomic potentials significantly...

  86. The Optical Freqency Comb: A Remarkable Tool for Metrology, Science and Medical Diagnostics

    31 Dec 2008 | Online Presentations | Contributor(s): John L. Hall

    The Optical Frequency Comb concept and technology exploded in 1999-2000 from the synthesis of advances in independent fields of Laser Stabilization, UltraFast Lasers, and NonLinear Optical Fibers. The Comb was developed first as a method for optical frequency measurement, enabling a...

  87. Modeling and Analysis of VLSI Interconnects

    10 May 2007 | Online Presentations | Contributor(s): Cheng-Kok Koh

    With continual technology scaling, the accurate and efficient modeling and simulation of interconnect effects have become problems of central importance. In order to accurately model the distributive effects of interconnects, it is necessary to divide a long wire into several segments, with each...

  88. Developments in Metamaterials and Transformation Optics

    29 Mar 2010 | Online Presentations | Contributor(s): David R. Smith

    Metamaterials—artificially structured microcircuits that can mimic the electromagnetic response of atoms and molecules—have vastly expanded the opportunities available for the design of electromagnetic structures. Starting in 2000 with the first report of a “left-handed” metamaterial, for which...

  89. Simulating with PETE: Purdue Exploratory Technology Evaluator

    25 Sep 2007 | Online Presentations | Contributor(s): Arijit Raychowdhury

    Using PETE one can evaluate any MOSFET like devices or any New Devices in terms of performance on Benchmark circuits. The input to the tool can be in terms of typical MOSFET parameters or in terms of I-V and C-V tables. The Benchmark circuits include minimum sized inverter, nand chain, norchain,...

  90. McCoy Lecture: Transforming Light with Metamaterials: A New Paradigm for the Science of Light

    19 Dec 2009 | Online Presentations | Contributor(s): Vladimir M. Shalaev

    One of the most unique properties of light is that it can package information into a signal of zero mass and propagate it at the ultimate speed. It is, however, a daunting challenge to bring photonic devices to the nanometer scale because of the fundamental diffraction limit. Metamaterials can...

  91. Microstructural Design of Electrically Active Materials and Devices Through Computational Modeling: The OOF Project

    20 Jan 2009 | Online Presentations | Contributor(s): R. Edwin Garcí­a

    We present an overview of a public domain program, the Object Oriented Finite Element analysis (OOF), which predicts macroscopic behavior, starting from an image of the microstructure and ending with results from finite element calculations. The program reads an image (or a sequence of images)...

  92. Selective Silicon Epitaxy Seen at the Nanometer Scale

    14 Jun 2007 | Online Presentations | Contributor(s): Matthew Mark Sztelle

    The presenter introduces NEMS (nanoelectromechanical systems) and STM (Scanning Tunneling Microscopy and continues to present material on Selective Silicon Epitaxy seen at the Nanometer ScaleMatthew M. Sztelle is a Research Assistant in the Scanning Tunneling Microscopy Group at the Beckman...

  93. Exploring Physical and Chemical control of molecular conductance: A computational study

    31 Jan 2008 | Online Presentations | Contributor(s): Barry D. Dunietz


  94. Designer Atoms: Engineering Rydberg Atoms Using Pulsed Electric Fields

    20 Jun 2008 | Online Presentations | Contributor(s): F. Barry Dunning

    Advances in experimental technique allow application of pulsed unidirectional electric fields, termed half-cycle pulses (HCPs), to Rydberg atoms whose characteristic times are much less than the classical electron orbital period. In this limit each HCP simply delivers an impulsive momentum...

  95. Potassium Channels: Conduction, Selectivity, Blockage, Inactivation, and Gating

    03 Nov 2006 | Online Presentations | Contributor(s): Benoit Roux, NCN SLC@Northwestern

    The determination of the structure of the KcsA K+ channel fromStreptomyces lividan has made it possible to investigate the functionof a biological channel at the atomic level. Because of its structuralsimilarity with eukaryotic K-channels, investigations of KcsA areexpected to help understand a...

  96. Peanuts vs. Pyramids: Two Perspectives on MEMS

    23 Nov 2009 | Online Presentations | Contributor(s): Stephen D. Senturia

    MEMS, the acronym for Micro-electromechanical Systems, also known simply as “Micro-systems,” come in two main types: commodity products (the peanuts) and MEMS-enabled products (the pyramids, or, more correctly, the inverted pyramids). The economics of scale greatly affect how these two classes...

  97. Introduction to and Advances in Self-Healing Polymers

    14 Jun 2007 | Online Presentations | Contributor(s): Gerald O. Wilson

    The presenter briefly introduces the topic of Self-Healing Polymer research and continues to give a Survey of Ruthenium Metathesis Catalysts for Ring Opening Metathesis Polymerization-Based Self-Healing ApplicationsGerald O. Wilson is a Ph.D. Candidate in the Department of Materials Science...

  98. Finite Size Scaling and Quantum Criticality

    02 Jan 2008 | Online Presentations | Contributor(s): Sabre Kais

    In statistical mechanics, the finite size scaling method provides a systematic way to extrapolate information about criticality obtained from a finite system to the thermodynamic limit. For quantum systems, the finite size corresponds not to the spatial dimension but to the number of elements in...

  99. The Pioneers of Quantum Computing

    19 Dec 2009 | Online Presentations | Contributor(s): David P. Di Vincenzo

    This talk profiles the persons whose insights and visions created the subject of quantum information science. Some famous, some not, they all thought deeply about the puzzles and contradictions that were apparent to the founders of quantum theory. After many years of germination, the confluence...

  100. Selected Properties of Carbon Nanostructures: from Exotic Fullerenes to Nanotubes

    30 Mar 2008 | Online Presentations | Contributor(s): Manfred M. Kappes

    The talk presents results from ongoing projects in the field of carbonnanostructures: (i) Mass selected ion beam soft-landing has been usedto generate exotic fullerene materials comprising covalent linked,non-IPR cages. Apart from microscopic structure, we have studiedthermal and electronic...

  101. Dynamics of Quantum Fluids: Path integral and Semiclassical Methods

    21 May 2008 | Online Presentations | Contributor(s): Nancy Makri

    The interplay of many-body nonlinear interactions and quantum mechanical effects such as zero-point motion or identical particle exchange symmetries lead to intriguing phenomena in low-temperature fluids, some of which remain poorly understood. Recent advances in theory and methodology have...

  102. Energy Innovations in the 21st Century: Role of ARPA-E

    13 Oct 2010 | Online Presentations | Contributor(s): Arunava Majumdar

    We are living through a Sputnik moment in our nation’s history, where we have witnessed multiple wake up calls with regards to the need for innovating in energy technologies. ARPA-E was created to address this need by investing in high-risk/high-impact projects, with a mission to: (i) reduce...

  103. Illinois nanohour Seminar: Rapid Label Free Detection of Rotavirus using Photonic Crystal Biosensors

    02 Mar 2009 | Online Presentations | Contributor(s): Leo L Chan

    Rapid Label-free Detection of Rotavirus using Photonic Crystal Biosensors Presentation Outline Rotavirus Current Detection Method Label-based versus label-free assay Photonic Crystal (PC) Biosensor Biosensor Fabrication Biosensor Operation Assay Protocol Titration Series Comparison with ELISA...

  104. Illinois nanohour Seminar: Label-Free Biosensor Based upon Replica-Molded Vertically Emitting Distributed Feedback Laser

    24 Feb 2009 | Online Presentations | Contributor(s): m lu

    Label-Free Biosensor Based upon Replica-Molded Vertically Emitting Distributed Feedback LaserPresentation Outline State of the art of label-free optical biosensor Biosensor using active optical resonator Design, optimization, fabrtication, and characterization of DFB laser biosensor Interaction...

  105. Fun in the Sand: Some Experiments in Granular Physics

    16 Feb 2010 | Online Presentations | Contributor(s): Peter E. Schiffer

    In the last two decades, condensed matter physicists have begun an intense study of the dynamic and static properties of granular media (materials made from individual acroscopic solid grains). These materials offer a vast arena of new physical phenomena which are highly accessible and largely...

  106. Responsible Authorship and Peer Review

    11 Mar 2011 | Online Presentations | Contributor(s): James R. Wilson

    This talk is based on an article that appeared in Science and Engineering Ethics and on an instructional module developed for the Responsible Conduct of Research (RCR) Program of the NC State University Graduate School.

  107. Innovations and a Sustainable Energy Future

    19 Oct 2010 | Online Presentations | Contributor(s): Arunava Majumdar

    Keynote speech for the 2010 Engineers for a Sustainable World (ESW) National Conference.

  108. A Half Century of Nonlinear Optics

    11 Mar 2011 | Online Presentations | Contributor(s): Robert W. Boyd

    In this talk, we first present a review of the development of the field of nonlinear optics, and we then survey some areas of recent research including quantum imaging and implications of the ability to control the group velocity of light.

  109. Putting the Electron’s Spin to Work

    01 Apr 2011 | Online Presentations | Contributor(s): Daniel Ralph

    I will discuss recent progress in experimental techniques to control the orientations of nanoscale magnetic moments and electron spins, and to use these new means of control for applications. One powerful new capability arises from the fact that thin magnetic layers can act as filters for spins.

  110. The History of Semiconductor Heterostructures Research: From Early Double Heterostructure Concept to Modern Quantum Dot Structures

    21 Jun 2011 | Online Presentations | Contributor(s): Zhores I. Alferov

    It would be very difficult today to imagine solid-state physics without semiconductor heterostructures. Semiconductor heterostructures and especially double heterostructures, including quantum wells, quantum wires and quantum dots, currently comprise the object of investigation of two thirds of...

  111. How to Make High Quality Plots in MATLAB

    29 Jul 2011 | Online Presentations | Contributor(s): Mehdi Salmani Jelodar

    This presentation is a tutorial for plotting higher quality figures by Matlab. Basic elements of plots are introduced and the way to manipulate these elements by coding is explained. Tow methods for dual axis plotting is described. At the end an approach to print figures automatically (by...

  112. Mathematics of Ions in Channels and Solutions: Stochastic Derivations, Direct, Variational and Inverse Solutions that fit Data

    03 Feb 2014 | Online Presentations | Contributor(s): Bob Eisenberg

    Literally thousands of biologists study the properties of channels in experiments every day. My collaborators and I have shown how the relevant equations can be derived (almost) from stochastic differential equations, and how they can be solved in inverse, variational, and direct problems using...

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.