Support

Support Options

Submit a Support Ticket

 

Simulation of Sub-Micron Thermal Transport in Semi-Conduction and Dielectrics

By Jayathi Murthy

Purdue University

Licensed according to this deed.

Published on

Abstract

murthy In recent years, there has been increasing interest in understanding thermal phenomena at the sub-micron scale. Applications have included the thermal performance of microelectronic devices, thermo-electric energy conversion, ultra-fast laser machining and many others. More recently, understanding sub-micron thermal transport has become important in the design of micro- and nano-electromechanical systems, both in terms of controlling thermal fluctuations, and in utilizing thermal gradients effectively. It is now accepted that Fourier's law for heat conduction is invalid at small length and time scales. The talk reviews alternative models for phonon transport, including the Boltzman transport equation and molecular dynamical models. The talk focuses on numerical techniques for the solution of the BTE, the development of phonon transport models which include phonon dispersion, and the application of these models to steady and unsteady sub-micron thermal transport.

Cite this work

Researchers should cite this work as follows:

  • Jayathi Murthy (2005), "Simulation of Sub-Micron Thermal Transport in Semi-Conduction and Dielectrics," http://nanohub.org/resources/116.

    BibTex | EndNote

Time

Location

Burton Morgan Entrepreneurship Center, Room 121

Tags

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.