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Outline

• Introduction: quantum wells and QCLs
• Nonlinear phenomena in QCLs

– Nonlinear frequency conversion
– Frequency locking and phase coherence of 

transverse modes; synchronization
– Mode locking and ultrashort pulse generation; 

coherent regimes



Other stuff

• Ultrafast and collective phenomena in 
semiconductor magnetoplasmas
– Nature Phys. 2010, PRLs, PRB 2010

• Magneto-optics in dilute magnetic 
semiconductors (PRB2011)

• Mid-IR & THz optics in graphene and CNTs
– TERANO NSF PIRE Center

• Coherent mid/far-IR photodetectors (NSF ERC)

• Cavity QED, Hawking-Unruh radiation



Quantum-confined electron gas
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Quantum wells
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• Large dipole moment ~ L
• Sharp resonances

L



Build your own 
nanostructure:

E-field

 

V(z) ⇒ V(z) + eEz

• Sharp resonances
• Tunable frequencies and 

oscillator strengths
• Ability to control populations
by tunneling and coupling to
phonons 

• Create population inversion
• Enhance optical nonlinearity



One example of QC laser design

Radiative lifetime: 100 ns
Nonradiative lifetime: 1 ps
How to provide population inversion?
Fast depopulation of state 2: E21 ~ ELO
Many photons emitted per electron if Tstim <<  T1
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Vertically stack 20-30 stages; sandwich 
them into the waveguide supporting a 
low-loss transverse EM mode

5
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Faist et al. 1994



How one can enhance optical nonlinearity in 
QCLs and “engineer” nonlinear optical devices:

– Playing with multiple resonances to generate new 
frequencies

– Playing with saturation nonlinearity (spectral and 
spatial hole burning): phase coherence of EM 
modes and mode locking

– Playing with coherence of the gain medium 
(intersubband polaritons): Rabi oscillations,  
Risken-Nummedal-Graham-Haken (RNGH) 
instability; self-induced transparency; 
superfluorescence



Resonant nonlinear optics with nanostructures

Coupled quantum well structures can be designed to have 
huge resonant optical nonlinearity (known for 30 years)
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χ(2) ~ 104 −106 pm/V

Compare with 1-10 pm/V for bulk crystals 

momentsdipole

linewidths

detunings

ij

−

−

−∆

ij

ij

d
γ

213 ωωω +=
213 ωωω −=

En
er

gy
, m

eV

z, A



A way to get around resonant absorption
Resonant optical nonlinearity is accompanied by 
resonant absorption 
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Solution: create the nonlinear 
medium with gain

This leads to nonlinear 
quantum cascade lasers
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II.

χ(2) ~ 105 pm/V at ~ 7-9 μm laser wavelength 

• Maximizing the product of dipoles d23d34d24
• Quantum interference between cascades I and II

Monolithic integration of quantum-cascade lasers 
with resonant optical nonlinearities

This is NOT sequential photon absorption/reemission!

Milliwatt power in SHG: 
O. Malis et al. 2004

Second harmonic generation



(a) (b)
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Electron 
population1
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3

• Make a powerful mid-IR QCL emitting at two modes
• Provide strong nonlinearity for frequency mixing process
• Design a low-loss, phase-matched waveguide for all 

three modes
2121 , kkkTHzTHz −=−= ωωω

Difference frequency generation in two-wavelength QCLs



Spatial charge
distribution

Electronic states
of MQW

Electron
distribution

Dipole moments
Relaxation rates

Coupled EM
modes Quantum well

Design and doping

Linear &
Nonlinear

Susceptibility

Gain/
Absorption

Modal structure
Phase matching

Maximum
nonlinear

power

Highly nonlinear system of interacting propagating EM fields and electrons in QWs
Requires self-consistent modeling



Why should we suffer through this?

Why should you care?



If you need to generate frequencies which you could 
not reach otherwise

Unique functionalities: broadband tuning, ultrafast 
modulation, generation of ultrashort pulses, pulse 
shaping, phase coherence, squeezed and entangled 
light 

Why nonlinear optics?

Why with intersubband transitions?
• Because it is fun! Freedom of design

• Emerging applications for mid-IR and THz light



HITRAN Simulation of Absorption Spectra (3.1-5.5 & 7.6-12.5 µm)

NO: 5.26 µm

CO: 4.66 µm CH2O: 3.6 µm

NH3: 10.6 µm O3: 10 µm

N20, CH4: 7.66 µm

CO2: 4.3 µm

CH4: 3.3 µm

COS: 4.86 µm

Frank Tittel et al.



Air Pollution: Houston, TX



Wide Range of Gas Sensing Applications
• Urban and Industrial Emission Measurements
 Industrial Plants
 Combustion Sources and Processes (e.g. early fire detection)
 Automobile and Aircraft Emissions

• Rural Emission Measurements
• Environmental Gas Monitoring
• Spacecraft and Planetary Surface Monitoring
 Crew Health Maintenance & Advanced Human Life Support 

Technology
• Biomedical and Clinical Diagnostics (e.g. non-invasive breath 

analysis)
• Forensic Science and Security
• Fundamental Science and Photochemistry
 Life Sciences

Frank Tittel et al.



World Through Terahertz Glasses
f = 1 THz ⇒ E = 4 meV ⇒ λ = 300 µm 

• THz sees through dry opaque cover
• Unique THz spectra of explosives, biomolecules 

Teraview ThruVision Ltd. 



Why bother?
• Direct lasing is prohibited by lateral valleys
• Frequency up-conversion from the “sweet 

spot” of QCLs at λ ~ 4-6 μm
• Potentially reaching telecom wavelengths at 

1.5 μm
• Ultrafast (THz) modulation possible
• Detection by frequency up-conversion: sum-

frequency generation ω1 + ω2 = ω3

Extending operation of QCLs into the near-IR 
range with second harmonic generation



To reach short wavelengths, one needs deep wells

active
region
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L,X valleys

High conduction band offset at Γ-point:
1.4-1.7 eV in InGaAs/AlAsSb/InP
2.1 eV in InAs/AlSb

Γ-L,X distance is 0.6-0.7 eV: fatal for lasers
SHG is not sensitive to the position of lateral valleys
Calculation of highly excited subbands (> 1 eV) is a challenge

 

mz
*(E) = m*(1+ αE) !!

Farewell



• The order of conduction band minima:  
Γ – L – X (Y.Cho &, A.B. JAP 2010)
• L valley edge is the limit for 

laser transition due to scattering.
• L – Γ :  0.65 eV
• Vurgaftman et al, JAP 2001 : 0.5 eV

A 30 band k.p method

Ga0.47In0.53As

8 band effective mass
14 band effective mass
30 band 1st conduction band

Comparison of conduction band dispersions

To predict the position of highly excited subbands,
one needs to include at least 14 bands 
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Solving self-consistent Shroedinger + Poisson + density matrix + Maxwell 
equations for laser and SH fields

Including saturation, carrier distribution, LO phonon scattering, space charge  

Predicted SHG efficiency in a modal phase-matched device: 
~ 1 mW/W2

Cho & A.B. JAP 2010



Second-harmonic, third harmonic,  and sum-frequency generation:
PRL ‘03, APL’04, Opt. Lett.’04, JMO 2008, JAP’10; ongoing (with 
Cockburn) 

Raman laser
Mid-infrared: Nature’05, APL’06
Terahertz: ongoing (with Belkin)

DFG Terahertz generation:
Nature Photonics’07, APL’08, JSTQE’09; ongoing (with Belkin)

THz in magnetic field, in graphene and CNTs:
Nature Physics 2010; ongoing (with Kono)

Playing with multiple resonances

Collaboration with M. Belkin (UT-Austin), F. Capasso (Harvard), C. 
Gmachl (Princeton), J. Kono (Rice), J. Cockburn (Sheffield)



T-rays allow you to see through any dry optically opaque cover: envelope, 
clothing, suitcase etc, and locate non-metallic things, even read letters.

T-rays have enough specificity to distinguish “big” molecules; they can be 
used to detect explosives, drugs, etc. 

THz spectroscopy and imaging

Three different drugs: MDMA (left), aspirin (center), and 
methamphetamine (right), have different images in T-rays
K. Kawase, OPN, October 2004

Q. Hu, QCL Workshop



Data up to 2009



 

hω = kBT
Lack of room-temperature THz semiconductor lasers 
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• Make a powerful mid-IR QCL emitting at two modes
• Provide strong nonlinearity for frequency mixing process
• Design a low-loss, phase-matched waveguide for all 

three modes
2121 , kkkTHzTHz −=−= ωωω

Difference frequency generation in two-wavelength QCLs



THz generation in two-
wavelength QCLs

M. Belkin et al. Nature Phot. 1, 288 (2007).
M. Belkin et al., APL 96, 201101 (2008)
Y. Cho et al. submitted



Fig. 16. (a) The mid-IR emission spectrum collected from the edge of a typical device with second-order grating operated in pulsed mode at 80 K. (b) The terahertz emission spectrum from the surface of the
same device. (c,d) The L-I characteristics of the device of (a) for a the terahertz signal (c) and the two mid-IR pump beams (d) measured in pulsed mode at 80 K.

(a)

(b)

(c)
Mid-IR modes

THz mixing signal

Belkin et al. APL’08

First room-temperature THz semiconductor laser



Nonlinear section

DFG
Self-consistent simulations vs. analytic 
theory which neglects Raman coherences
Cho et al. 2011 

In-plane integration of laser and nonlinear section

simulations

analytic



THz Raman lasers

Nature 2005 (mid-IR); THz  in progress
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ωs-ω32, meV3

Ep Es
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∆

• Very large detuning ∆ to avoid absorption

• No real transitions to upper state 3

• Raman shift ω21 is fixed to be the phonon
frequency

Gain at two-photon resonance: 
ωp - ωs = ω21

In most Raman amplifiers and lasers, both pump and 
Raman fields are very far from one-photon resonance

ωp, ωsωp



One-photon absorption

“Two-photon” gain
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Stokes gain at arbitrary detuning
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Raman injection laser
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Very large Raman gain at 
resonance: ~ 10-4 cm/W

Raman shift is determined by 
intersubband transition and is 
tunable



Conclusions for this part

• “Extreme” frequency conversion to near-
infrared  or THz seems feasible

• Nonlinear signal power is lower than for direct 
lasing, but there are unique benefits:
– Room-temperature THz operation
– Reaching over the lateral valley cutoff wavelength
– Ultrafast modulation
– Broader tunability (in Raman lasers)



Nonlinear interactions and phase 
coherence of laser modes

• QCL as a “two-level” but multimode laser
• Saturation nonlinearity and its many faces:

– Limits growth of laser field 
– couples different modes, leading to mode 

competition, phase coupling, and mode locking

N2

N1

|E|2

Stimulated emission
& absorption

 

N2 − N1 ~
(N2 − N1)E =0

1+ (1/Is) Eµ Eν∑



N2 – N1

TM00

TM01

TM02

Longitudinal modes
Transverse Modes

Cavity length

Cavity cross-section

EM modes in QCLs: interaction through 
saturation nonlinearity

|E(z)|2

Saturation is inhomogeneous in space 
and in frequency (hole burning)

 

N2 − N1 ~
(N2 − N1)E =0

1+ (1/Is) Eµ Eν∑



Frequency and phase locking of 
transverse modes

Experimental signatures:

• Anomalous near-field and far-field beam pattern; 
beam steering; multistability

• Locking to commensurate frequencies or 
synchronization of lateral modes to a single comb

PRL 2009, OE review 2010, PRL 2011, JMO review 2011



Huge amount of research on transverse mode 
coherence, stationary or non-stationary pattern 

formation, coupled laser arrays etc. 

• Numerous studies in diode lasers but they have  different 
nature of nonlinearity, different dynamical behavior

• Synchronization is achieved by periodic modulation, 
external optical injection or feedback

• applications in communications and optical information 
processing (chaos synchronization, control of pattern 
formation, spatial and polarization entanglement)

• Recent studies of lateral mode structure in QCLs: Gellie et 
al. JAP 2009 (THz), Stelmakh et al. APL 2009 and Bewley et 
al. JQE 2005 (mid-IR)

• Lateral mode coherence and synchronization in QCLs: Yu et 
al. PRL 2009, Wojcik et al. OE 2010, PRL submitted



TM00

TM01

TM02

Experiment (Capasso group, Harvard): 
Multi-lateral mode regimes in buried heterostructure QCLs

7 μm wavelength, 12-24 μm active region calculated modes

NSOM measurements:
Beam steering

BH laser -> close thresholds for several modes

N. Yu et al., Phys. Rev. Lett. 102, 013901 (2009)



Evidence for phase locking between 
lateral modes

Far field

Near field

TM01 + TM01 → TM00 + TM02

 

2ϕ01 −ϕ00 −ϕ02

Far field

TM01

TM00 + TM02

Beam steering



TM00
TM01

TM02

ω

Nonlinear coupling of spectral combs

Nonlinear interaction leads to 
frequency pulling 

ω

ω

Three combs can lock into equidistant triplets or even to a single comb (synchronization)



Synchronization of modal combs

Waveguide width 19 μm PRL 2011



Maxwell-Bloch Equations
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D =
N2 − N1

N
“Linear” cavity modes
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Gain -

Saturation intensity -

Nonlinear overlap -

• Adiabatic elimination of inversion and polarization
• Χ(3) approximation

Coupled  equations for modal amplitudes: 

Cavity dispersion/loss

Large dipole moment gives rise to strong nonlinear coupling of laser modes

Fast gain relaxation T1 ~ 1 ps (Type A laser)  overdamps relaxation oscillations and 
leads to stable phase locking. No saturable absorber or external modulation!

 

T1 =1/γ ||

T2 =1/γ⊥

Modal gain Nonlinear mixing



Mean field approximation (averaging over 
the cavity length)

Modal amplitudes A(t) and phases Φ(t) 
for five different initial conditions

 

a j (t) = Aj (t)eiΦ(t )

Locking to a single frequency 

 

Ω =
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dt
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• Single stable multimode state locked to a single frequency at intermediate gains
• Bistable region outside 

For each gain: determine all stable solutions starting from 
a large set of random initial phases and amplitudes



All stable solutions for a large set of random initial phases and amplitudes

No synchronization gain above locking threshold 

Dynamics of one triplet



x1011
Theoretical far field 

• Three lateral modes, each has three longitudinal modes
• Note islands of synchronization 

Simulations for 60 random initial conditions per each value of gain



Locking longitudinal modes in QCLs

• Can we generate ultrashort pulses in the 
mid/far-infrared?

Adding 10 sines with zero initial phases

This is very difficult in QCLs where T1 << Tround

Tround



Active mode locking (Capasso group, 2009)

Gain is modulated in a short section at the round-trip frequency f = 1/Tr

Optics Express 2009, 2010



2-Photon Autocorrelation shows 3-ps pulses
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High-amplitude modulation is required;
Mode locking exists only very close to laser threshold



In QCLs gain has a fast recovery time:
T1 < Tr = 2Lc/c

It responds to instantaneous intensity
Stays unsaturated
Only continuous lasing possible ??

Gain = g0
T1 << Tr
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Possible solutions

• Can locking of multiple transverse modes lead 
to pulsed operation?

• Mode locking in the coherent regime? 
Parametric RNGH instability, π-solitons



Conclusions
• QCLs show unique nonlinear dynamical behavior
• Stable phase locking and synchronization of lateral modes 

– Requires nearly equal thresholds for several lateral modes 
(buried heterostructure laser);

– Requires near-degeneracy of the spectrum: closely spaced 
modes with different transverse order

– Note that stable locking of longitudinal modes belonging to ONE 
transverse mode is impossible without a saturable absorber

• CONTROL over the phases of locked modes?
• Can we make stable pulses out of locked lateral modes?
• Only active mode locking was achieved so far. Is single-

pulse operation via passive mode locking possible?



Nonlinear deformation of the gain spectrum

Detuning, THz

However, instability threshold is: Ipump > 9 Ithr

 

~ 2ΩRabi



Threshold is lowered by saturable absorber

(Unsaturated loss divided by saturation intensity)

PRA 2007,2008; JMO review 2011

Saturable absorption due to 
Kerr effect
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QCL spectra
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Observed in QC lasers of different designs 
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