On Monday July 6th, the nanoHUB will be intermittently unavailable due to scheduled maintenance. We apologize for any inconvenience this may cause. close


Support Options

Submit a Support Ticket


BME 695L Lecture 5: Nanomaterials for Core Design

By James Leary

Biomedical Engineering, Purdue University, West Lafayette, IN

Published on


See references below for related reading.

5.1      Introduction
5.1.1    core building blocks
5.1.2    functional cores
5.1.3    functionalizing the core surface

5.2      Ferric oxide cores
5.2.1    paramagnetic cores
5.2.2    superparamagnetic cores
5.2.3    ferric nanorods
5.2.4    advantages and disadvantages

5.3      C60 and carbon nanotubes
5.3.1    size and structure of C60
5.3.2    elongation of C60 into carbon nanotubes
5.3.3    advantages and disadvantages

5.4      Gold cores
5.4.1    gold nanoparticles
5.4.2    gold nanorods
5.4.3    other shapes (e.g. "stars")
5.4.4    gold nanoshells
5.4.5    advantages and disadvantages

5.5      Silica cores
5.5.1    silica nanoparticles
5.5.2    mesoporous silica NP for drug delivery and biosensing
5.5.3    advantages and disadvantages

5.6      Quantum dots
5.6.1    size determines color
5.6.2    good for multicolor fluorescence
5.6.3    importance of coatings
5.6.4    conjugating targeting molecules
5.6.5    examples from studies
5.6.6    finding sub-optical nanoparticles
5.6.7    cytotoxicity issues

5.7      Next generation quantum dots
5.7.1    Water-Soluble Doped ZnSe Nanocrystal Emitters
5.7.2    Organic quantum dots

5.8      Hybrid materials
5.8.1    gold-ferric oxide nanoparticles and nanorods
5.8.2    NIR fluorescent-chitosan polymer-iron oxide core hybrids
5.8.3    dual-modality MRI/NIRF imaging with hybrid nanoparticles


Copyright © 2011, James F. Leary, All rights reserved.


Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A. "Chemistry and Properties of Nanocrystals of Different Shapes" Chemical Reviews 105, 1025-1102, 2005.
Mornet, S., Vasseur, S., Grasset, F., Duguet, E. "Magnetic nanoparticle design for medical diagnosis and therapy" Journal of Materials Chemistry 14: 2161-2155, 2004.
Osaka, T., Matsunaga, T., Nakanishi, T., Arakaki, A., Niwa, D., Iida, H. "Synthesis of magnetic nanoparticles and their application to bioassays" Analytical and Bioanalytical Chemistry 384: 593–600, 2006.
Park, S-J, Kim,S., Lee, S., Khim, Z.G., Char, K., Hyeon, T. "Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres" Journal of the American Chemical Society 122, 8581-8582, 2000.
Wang, L., Wang, K., Santra, S., Zhao, X., Hilliard, L.R., Smith, J.E., Wu, Y., Tan, W. "Watching Silica Nanocrystals Glow in the Biological World" Analytical Chemistry 645-654, 2006.
Cooper, C.L., Reece, L.M., Key, J., Bergstrom, D.E, Leary, J.F. “Water-soluble iron oxide nanoparticles for nanomedicine” Birck Poster Sessions Paper 21, 2008.
William W. Yu, Joshua C. Falkner, Cafer T. Yavuz and Vicki L. Colvin "Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts" Chemical Communications 2306 – 2305, 2004.
Lu, J., Liong, M., Zink, J.I., Tamanoi, F. “Mesoporous Silica Nanoparticles as a Delivery System for Hydrophobic Anticancer Drugs” Small 3(8): 1341 – 1346, 2007.
Igor I. Slowing, Brian G. Trewyn, Supratim Giri, and Victor S.-Y. Lin “Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications” Advanced Functional Materials 17, 1225–1236, 2007.

Cite this work

Researchers should cite this work as follows:

  • James Leary (2011), "BME 695L Lecture 5: Nanomaterials for Core Design," http://nanohub.org/resources/12057.

    BibTex | EndNote



1083 BME, Purdue University, West Lafayette, IN


nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.