Friday morning October 31, nanoHUB tools and home directories will be unavailable from 6 AM to noon (eastern time); we're getting a new file server! All tool sessions will be lost. Also, the web site will be unavailable for about 15 minutes sometime between 8-9 AM. close

Support

Support Options

Submit a Support Ticket

 

Theory and characterization of random defect formation and its implication in variability of nanoscale transistors

By Ahmad Ehteshamul Islam

University of Illinois at Urbana-Champaign

Category

Papers

Published on

Abstract

Over the last 50 years, carrier transport has been the central research topic in the semiconductor area. The outcome was a dramatic improvement in the performance of a transistor, which is one of the basic building blocks in almost all the modern electronic devices. However, nanoscale dimensions of current transistor following Moore's law have shifted the spotlight from carrier transport towards the reliability and variability constraints. Modern transistors operate at a high electric field. They also use small metal gates and high-κ gate dielectric. Therefore, these transistors regularly suffer from process variations due to statistical variation in metal grain orientations at the gate, number of dopants in the substrate, thickness of the dielectric, etc . In addition to these 'time-zero' variation sources, presence of high oxide electric field and use of high-κ materials as dielectric (like silicon oxynitride and hafnium-based materials) strains the chemical bonds in the bulk and interface of the amorphous dielectric. As a result, defects are formed within a transistor, which leads to 'time-dependent' variation. Taken together, these 'time-zero' and 'time-dependent' phenomenon cause variation in transistor parameters (e.g., threshold voltage, mobility, sub-threshold slope, drain current) - which eventually lead to the IC failure, when the variation goes beyond a certain pre-defined limit.

In this thesis, a physical model is developed to understand the defect formation at the dielectric/substrate interface of a transistor (a phenomenon, generally known as Negative Bias Temperature Instability), which is one of the major scaling concerns in current transistors. The time dynamics of interface defect generation is captured within a Reaction-Diffusion framework and hence compared with the characteristic experimental signatures measured over a wide range of supply voltage, temperature, materials within the dielectric, and channel strain. This comprehensive analysis further establishes the subtleties in interface defect characterization using modern techniques and also explains the intricacies for analyzing the impact of defect generation at circuit level. More importantly, the study with interface defects has identified the presence of self-compensation in advanced CMOS technology. Later, such self-compensation is shown to be generally applicable to many sources of 'time-dependent' and 'time-zero' variabilities. Design of such variation-resilient transistor may reshape how circuits are designed and evaluated currently for handling process-induced (time-zero) and temporal (time-dependent) variations - which is one of the grand challenges for continuing transistor scaling following Moore's law.

Bio

Ahmad Ehteshamul Islam was born in Sylhet, Bangladesh in 1979. He received
B.S. in electrical and electronic engineering (EEE) from Bangladesh University of Engineering and Technology (BUET) in 2004. Since 2005, he is pursuing the Ph.D. degree in the School of Electrical Engineering and Computer Science, Purdue University, West Lafayette, IN and is expected to receive the degree by May 2010. During 2004–2005, he was a Lecturer with the Department of EEE, BUET. His research mainly focuses on studying the impact of variabilities in semiconductor devices. He is currently working with variation resilience aspects in nanoscale transistors. He has authored and coauthored more than 20 journals and conference papers. Mr. Islam has been a Student Member of the IEEE Electron Devices Society (since 2002) and American Physical Society (since 2008) and also serves as a Reviewer for several IEEE, Elsevier, APS, and
Electrochemical Society journals. He is the recipient of Kintar-Ul-Haque Gold Medal (2005) for his undergraduate result and IEEE EDS Ph.D. Fellowship (2008), Intel Foundation PhD Fellowship (2009-2010) for his work on transistor reliability. He was also involved as student team leader (2002-2003) and faculty co-supervisor (2004-2005) of EEE, BUET team in International Future Energy Challenge 2003 and 2005 competitions, respectively.

Sponsored by

Taiwan Semiconductor Manufactuing Corporation (TSMC)
Applied Materials (AMAT)
Nanoelectronic Research Initiative (NRI)
2008 IEEE Electron Device Society PhD Fellowship
2009-2010 Intel Foundation PhD Fellowship

Cite this work

Researchers should cite this work as follows:

  • http://proquest.umi.com/pqdlink?did=2124494281&Fmt=7&clientId=36305&RQT=309&VName=PQD
  • Ahmad Ehteshamul Islam (2011), "Theory and characterization of random defect formation and its implication in variability of nanoscale transistors," http://nanohub.org/resources/12182.

    BibTex | EndNote

Tags

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.