

Chapter 2 - Properties of Light

Gabriel Popescu

University of Illinois at Urbana-Champaign Beckman Institute

Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu

Amplitude A and phase φ are random functions in both <u>time</u> and <u>space</u>:

$$\vec{E}(\vec{r},t) = \vec{e}A(\vec{r},t).e^{i\phi(\vec{r},t)}$$
(1)

- a) Polarization:
 - Gives the direction of field oscillation
 - Generally, light is a <u>transverse wave</u> (unlike sound = longitudinal)

 ■ Anisotropic materials: different optical properties along different axis → useful

- Polarization: a)
 - There is always a basis (\hat{x}, \hat{y}) for decomposing the field into 2 polarizations (eigen modes); equivalently (right, left) circular polarization is also a basis.
 - Dichroism: different absorption for different pol \rightarrow one way to create polarizers:

Malus Law: $|E_2| = |E_1| * \cos \theta$

$$|E_2| = |E_1| * \cos \theta$$

(2)

a) Polarization:

$$I = |E|^2$$
; $I_2 = I_1 * \cos^2 \theta$

Birefringence – Different refr. index for different pol.

- a) Polarization:
 - Natural Light \rightarrow unpolarized \rightarrow superposition $E_x = E_y$ with no phase relationship between the two
 - Circularly polarized \rightarrow $E_x = E_y$, $\phi_x \phi_y = \pi/2$!
 - Matrix formalism of polarization transformation (Jones 2x2, complex & Muller 4x4, real)

We'll do this later.

$$\begin{pmatrix} E_{x} \\ E_{y} \end{pmatrix} = J \begin{pmatrix} E_{x} \\ E_{y} \end{pmatrix}$$

$$|E|^2 = I \rightarrow \text{Stokes Vect. Dim 4}$$

$$J_{ij}\in\mathbb{C}$$

Thermal source

Stabilized laser

Ζ

c) Phase: $[\Phi] = rad$

Plane Wave

Φ=kz

- c) Phase: $[\Phi] = rad$
 - For quasi-monochromatic fields, plane wave

$$\phi = \omega t - \vec{k} \cdot \vec{r}$$

•
$$k = \frac{\omega}{c} = \frac{2\pi\upsilon}{c} = \frac{2\pi}{Tc} = \frac{2\pi}{\lambda} = \text{wave number}$$
 (3)

$$\lambda = cT$$
; $T = \frac{1}{N}$; $\omega = 2\pi N$

2.2 The frequency domain representation

Random variable E(t) has a frequency-domain counterpart:

$$E(\omega) = A(\omega)e^{i\phi(\omega)} \tag{4}$$

Similarly E(x) has a frequency-domain pair:

$$E(\xi) = A(\xi)e^{i\phi(\xi)} \tag{5}$$

$$\phi(\omega) = k \cdot z = n(\omega) \cdot k_0 \cdot z$$

$$\uparrow_{k_0} = \frac{2\pi}{\lambda}$$

2.2 The frequency domain representation

- a) Spectral amplitude:
 - Optical Spectrum: $S(\omega) = |A(\omega)|^2$
 - Angular Spectrum: $S(\xi) = |A(\xi)|^2$

- $[\xi] = m^{-1} =$ Spatial Frequency (connects to angular spectrum)
- Tipically: $t \leftrightarrow \omega$ Will follow similar equations $x \xi$
- The information contained is the same (t, ω) and (x, ξ)

2.2 The frequency domain representation

- b) Spectral phase:
 - Phase delay of each spectral component

Optical Frequency

$$\alpha = chirp$$

•Dispersive material (linear chirp)

Spatial Frequency

 Defocused point source (1st order aberration) A point is mapped to a blur

• Full similarity between (t,ω) and (x,ξ)

$$\frac{d}{d\omega}\omega^2 \sim \omega$$

2.3 Measurable Quantities

The information about the system under investigation may be contained in <u>polarization</u> and:

■ A(t),
$$\phi(t)$$

■ A(ω), $\phi(\omega)$
■ A(x), $\phi(x)$
■ A(ξ), $\phi(\xi)$
(x, ξ)
8 quantities

Experimentally, we have access only to:

$$I = \left\langle \left| A(t) \right|^2 \right\rangle = \text{time average}$$

2.3 Measurable Quantities

Experimentally, we have access only to:

$$I = \langle |A(t)|^2 \rangle = \text{time average}$$
 (6)

• i.e the phtodetectors (photodiode, CCD, retina, etc) produce photoelectrons:

2.3 Measurable Quantities

- All detectors sensitive to power/energy
- However, all 8 quantities can be accessed via various tricks
- Eg1: Want $I(\lambda)$ → measure $I(\theta)$ and use a device with $\theta(\lambda)$
- Eg2: Want $\phi \rightarrow$ use interferometry $\rightarrow I(\phi)\alpha |E_1||E_2|\cos(\phi_1 \phi_2)$

 Space - momentum or energy-time cannot be measured simmultaneously with infinite accuracy

For photons:

$$\begin{cases} E = \hbar \omega \\ -\frac{1}{p} = \hbar \bar{k}; \ p = \frac{h}{\lambda} \end{cases}$$

a)
$$t-\omega$$

$$\hbar\Delta\omega\Delta t = \text{constant}$$

$$\rightarrow |\Delta\omega\Delta t \simeq 2\pi$$

- Implications:
 - 1- short pulses require broad spectrum
- 2-high spectral resolution requires long time of measurement

$$\frac{\overline{k}_{i}}{\overline{q}}$$

$$\underline{\overline{k}_{i}} \underbrace{\overline{k}_{s}}_{\Theta} \underbrace{\overline{\Delta p}} = h(\overline{k}_{s} - \overline{k}_{i}) = h\overline{q}$$

$$\Rightarrow \left| \Delta x | \overline{q} | \approx \pi \right|$$

$$\Delta x |q| \approx \pi$$
 ; $|q| = 2k \sin(\frac{\theta}{2})$

$$\rightarrow \Delta x \frac{2\sin(\theta/2)}{2} \approx 1$$

$$\theta \sim \frac{\lambda}{\Delta x}$$

$$\rightarrow \Delta x_{\min} \approx$$

 $\Delta x_{\min} \approx \frac{\lambda}{2}$ - meaning of resolution

■ Smaller aperture → Higher angles

- If aperture $<\frac{\lambda}{2}$, light doesn't go through (easily)
- Eg: Microwave door

- We will encounter these relationships many times later
- Fourier may have understood this uncertainity principle way before <u>Heisenberg!</u>