THE WAVE EQUATION

5.1. Solution to the wave equation in Cartesian coordinates

Recall the Helmholtz equation for a scalar field U in rectangular coordinates
VU (r,@)+ B (r,o)U (r,®) =0, (5.1)
Where (3 is the wavenumber, defined as

B2 (r,o) =0’ us(r,0)-iouc (r,o)
o . (5.2)
=n*(r, a))c—z— iouo (r,o)

Assuming lossless medium (o =0) and decoupling the vacuum contribution (n=1) from Z(r,), we re-write Eq. 2 to explicitly show the driving
term, namely

VU (r,0)+k U (r,0) =k’ [ n° (r,0)-1]U (r,0), (5.3)
where k, = COC . Note that Eq. 3 preserves the generality of the Helmholtz equation. The Green’s function, h, (an impulse response) is obtained by

setting the driving term (the right hand side) to a delta function,

Vzh(r, w)+ kozh(r,a)) =—5® (I’)

(5.4)
=-0(x)o(y)o(2)
In order to solve this equation, we take the Fourier transform with respect to r,
—k*h(k, @) +k*h(k,@)=-1, (5.5)



where k? =k -k .
This equation breaks into three identical equations, for each spatial coordinate, as

~ 1
h(k,,®)=
( ) kZ_kOZ

11
2Ky | ke Ky K, kg

To calculate the Fourier transform of Eq. 6, we invoke the shift theorem and the Fourier transform of function T

(5.6)

f(k—a)—e™ f(x)

1 .. (5.7)
= —>isign(x)
k
Thus we obtain as the final solution
1 ik
h(x,0)=—-e"" x>0 (5.8)
I 0
The procedure applies to all three dimensions, such that the 3D solution reads
h(r,w) o %57, (5.9)

where K is the unit vector, K =k /k . Equation 9 describes the well known plane wave solution, which is characterized by the absence of amplitude

modulation upon propagation. This is an infinitely broad wavefront that propagate along direction k (Figure 1).
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Figure 5-1. Plane wave.

v



5.2. Solution of the wave equation in spherical coordinates
For light propagation with spherical symmetry, such as emission from a point source in free space, the problem becomes on dimensional, with the

radial coordinate as the only variable,

@ (5.10)

Tﬁ(k)sinc(kr)kzdk
? (5.11)
jh(r)-sinc(kr)rzdr

The Fourier properties of ‘3’5(r) and V? extend naturally to the spherically symmetric case as

®)
s(r)—-1 (5.12)
VZ - —k?
Thus, by Fourier transforming Eqg. 4, we obtain the frequency domain solution,
ﬁ(k,a))z# (5.13)
k? —k,?



Not surprisingly, the frequency domain solutions for the Cartesian and spherical coordinates (Eqgs. 6 and 13, respectively) look quite similar, except
that the former depends on one component of the wave vector and the latter on the modulus of the wave vector. The solution in the spatial domain

becomes

(1) = [—— S'”k(rkr).kde

Ok2_k02
0 ikr_ —ikr
N | IR S Al B (5.14)
2rolk=k, k+k, 2i
0 ikr
S Y
4ir 3 k =k,

We recognize in Eq. 15 the Fourier transform of a shifted % function, which we encountered earlier (Egs. 7). Thus, evaluating this Fourier

transform, we finally obtain Green’s function for propagation from a point source,

h(ro)c>—, r>0 (5.15)

This solution defines a (outgoing) spherical wave.
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Figure 5-2. Spherical wave
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ECE 460 — Optical Imaging
3.10 Lens as a phase transformer

» E=E, .e" becomes important
= How is the wavefront changed by a lens? B

9, y) = knb(x,y) + k[b, - 6<x,b9>]'} 33
| |

glass air

= kb, +k(n—1)b(x,y)

Chapter 3: Imaging
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3.10 Lens as a phase transformer

= Let’s calculate b(x,y); assume small angles
bl =R, - (Pcl) =
=R —+/R?—(aR)’ = R1[1— 1—052}

. X
* Taylor expansion: J1+x| _  =1+— Small Angle Approx
, , 2 (Gaussian)
o a
=R |1-|1-—= |[|=R = (3.33)
> b 1{ [ 5 H 15
/ 2 2
" g=1ana = x*y
Rl
2 2
" So: x,y)=>—Y 3.34
b, (X, Y) 2R (3.34)

Chapter 3: Imaging 3
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3.10 Lens as a phase transformer

> b(x,y)=b, =B (X, y) -0, (X, y) =

2 2
:b_x +y (1 1 (3.35)
° 2 \R R,

= This is the thickness approximation

* The phase ¢ becomes:
o(X,y) =¢, —k(n-1)b(x,y) =

2 2
:¢O—kx Y (n-1) 11 (3.36)
2 R R,
= But we know: l:(n_1) 1 1
f R R,

Chapter 3: Imaging 4
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3.10 Lens as a phase transformer

N

E(x,y) E'(x,y)
- E I(X’ y) — E(X’ y) ) 1:e (X’ y) (3.37)
= The lens transformation is:
t,=e" = o
_ eiknbo e—lﬂ(x +y°) (3.38)

Chapter 3: Imaging
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3.10 Lens as a phase transformer

= Alens transforms an incident plane wavefront into a parabolic

shape
= Note: f>O0 covergentlens

f <0 divergent

= So, if we know how to propagate through free space, then we
can calculate field amplitude and phase through any imaging
system

Chapter 3: Imaging 6
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3.11 Huygens-Fresnel principle

= Spherical waves: R

e
= \Wavelet: h=——

R
2 2
-R:Jﬁ+y?+f=1th(+y

Z2

= We are interested close to OA, i.e. small angles

2 .2
- R=7 1+1 X+ (3.39)
2| 72

Chapter 3: Imaging 7
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3.11 Huygens-Fresnel principle

= For amplitude }/R:% is OK

eikR
R=12
2,2
= For phase kR:kz{lJrl(X +2y ﬂ
- 2

- The wavelet becomes: .
ikz k(X +y") 5 5
h(x,y)=—e 22 (3.40a) f(x,y)=x"+y
z 2
= Remember, for the lens we found: f(x)=X
K
(X" +y?)
g 2t (3.40b)
te (X’ y) =e7e N Negative Lens \ j

" Free space acts on the wavefront like a divergent lens

(note “+” sign in phase)

Chapter 3: Imaging 8
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3.11 Huygens-Fresnel principle

= At a given plane, a field is made of point sources

E(x,y)=[[E(X,y)S(x—x)S(y -y )dx'dy

= Eqg 3.40 a-b represent the impulse response of the system (free
space or lens)

= Recall linear systems (Chapter 2, page 12, Eq 2.16)

= Final response (output) is the convolution of the input with
the impulse response (or Greeen’s function)

= Nice! Space or time signals work the same!

| £(x)S8(x —x)dx'=> f(x,)
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3.11 Huygens-Fresnel principle
Y/ by

e
e
7
e
1 d
4 1
7/
, 1
4
. 1
f 1
1 1
I 1

" uEm U(xy)
S X

U(x,y) = [[UEmh(x—¢,y—mdédn

ik ) ,
U(x,y)= ”U (&, n)ezz[(x_g) o ]d cdnp  (3.41)

Remember: !M\r\,\/\/\/\[\J @ J!\\ S M
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3.11 Huygens-Fresnel principle

* Fresnel diffraction equation = convolution

2

X +y

* Fresnel diffraction equation is an approximation (R=Z{l+ >

of Huygens principle (17" century)
plkR(S.17)

R(S,m)

= | Fresnel is good enough for our pourpose

U(X,Y)=%HU(§J7)

= Note: we don’t care about constants A (no x-y dependence)

ik

U(x,y)=[[U (& e

(=€) +(y-n)’ ] déds

Chapter 3: Imaging
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cosé(&,n)dédn (3.42)
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3.12 Fraunhofer ApproximationW/
. . Z, z, 7

= One more approximation (far field) | X
* The phase factor in Fresnel is: INear Fiold L | |
(X, y) = 2— (x=&)?+(y-n)"|= Fresne
= KTy )+ Tl 20 +yy)| oot

21 (3.43)

" If z>>k(&° +n°), we obtain the Fraunhofer equation:

U(xy)=A[[" U De = gedy Gan

* Thus eqg. 3.44 defines a Fourier transform
= Useful to calculate diffraction patterns !

Chapter 3: Imaging 12
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3.12 Fraunhofer Approximation

= Let’s define:

> U(f f) =[[UEme M dedn

= Example: diffraction on a slit

—

Kk

(3.45)

Chapter 3: Imaging
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3.12 Fraunhofer Approximation

* One dimensional: U(x):H(éj: a, |x| <a/2
a 0O, rest 4
= The far-field is given by Fraunhofer eq: _J——
U(fx): J‘ U(X)e—iszfXdX: l

N | o

L
a
= Similarity Theorem + J[I1(x)]=sinc(f,) :

- U(f,)=asinc(af,) =

sin(af
=a (afy) (3.46)

X

Chapter 3: Imaging 14
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3.12 Fraunhofer Approximation

= Always measure intensity = the diffraction pattern is:

sin(af,) |’
2
1(f,)=|U(f)] Ia{ : } (3.48)
af,

= Also Babinet’s Principle A6

f(x) > F[¢] [

1-1(x) > 6(S)—F[<S]

-Zﬁ- -Trf KTr -2I1TA afx>

Chapter 3: Imaging
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3.12 Fraunhofer Approximation

= Note: sin(af,)=sin

" narrow slit:

= wide slit:

d

d,

—h

X

1
\ a

9

9

\

> %: width of diffraction pattern

o
J

= Similarity Theorem <= uncertainty principle

Chapter 3: Imaging
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Quiz:

What is the diffraction pattern from 2 slits of size a separated by d?
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3.13 Fourier Properties of lenses

U(X,Y>)
U(x4Y4) U(x, y2)
3,73
F F
d, d,
.
= Propagation:
U(xy,y1) Fresnel——— U(x,,y,)
U(X21y2) Lens - U(X3Iy3)
U(X3ly3) Fresnel U(X4Iy4)

Chapter 3: Imaging
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3.13 Fourier Properties of lenses

L)+ (v %) ]

" U(X,Y2)=Ap ”U (%, )’1)92d1 dxdy;
—ik[x2+y2]
= U (%3 ¥3) = AU (%3, ya)e °
ik 2 :
a U(Xg,Y4) = A34_UU (X3, Y3)92d2 () o) ]dx3dy3

(3.49)

= Combining Egs (3.49) is a little messy, but there is a special
case when eqgs simplify = very useful

Chapter 3: Imaging 19
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3.13 Fourier Properties of lenses

" Ifd,=d,=f

ml C
=
N

U(Xg,Ys) = AAlj I Ui(x, y1)e y)dxldY1 (3.50)

f_Xag Ve
X 1y T 2
Af Af What is |3[U]]
_ o
J[U| 1=
= Same eq as (3.45); nowz 2 f 3[U -U*] =
= Lenses work as Fourier transformers J oy *

» Useful for spatial filtering

Autocorrelation

Chapter 3: Imaging 20
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3.13 Fourier Properties of lenses

= Exercise: Use Matlab to FFT images (look up “fft2” in help)

) Objed _ Fopdan Apmain
a) | E VAR \ |
u 1 B B .
3\ \? \é\ / ¢{ | || Final
A 3 |
Granting (amplitude) hHigh-pass
Q_-.‘:,j&&“
(5) R p— iFFT
b) @ I Final
QDMJ{L‘ELW

= Note the relationship between the frequencies passed and the
details / contrast in the final image

Chapter 3: Imaging



Fourier Optics
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2D FT pairs=> diffraction patterns
Using ImageJ)
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Time-domain: sound

load your mp3
plot time-series

plot frequency amplitude, phase, power
spectrum, linear/ log

show frequency bands, i.e. “equalizer”
adjust and play in real time

Equalizer from mp3 player




Space-domain: image

load your image
display image

show 2D frequency amplitude, phase, power
spectrum, linear/ log

show rings of equal freq., “image equalizer”

adjust and display in real time- example on
next slide



Fourier Filtering (Imagel)
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