BME 695 Engineering Nanomedical Systems November 3, 2011 Copyright, 2011 – James F. Leary

Lecture 14: Designing and Testing Integrated Nanomedical Systems

- 14.1 Introduction to integrated designs
 - 14.1.1 "Total design" but there is some order in the design process
 - 14.1.2 A brief outline of the total design process
- 14.2 Choose autonomous or non-autonomous design
 - 14.2.1 If autonomous, will there be error-checking to correct mistargeting?
 - 14.2.2 If autonomous, does the NMS perform all of the multi-step process sufficiently to accomplish the objective?
 - 14.2.3 If non-autonomous, what form of external modulation of the in-vivo nanomedical system will be used?
 - 14.2.4 If non-autonomous, are the external interactions able to adequately control the actions of the NMS?
 - 14.2.5 Evaluate reaction of NMS to external intervention
 - 14.2.6 Compare actions of NMS with and without external intervention.
 - 14.2.7 How do the actions of the NMS scale (linear? nonlinear? resonance?) with the size or extent of the external intervention?
- 14.3 Choose core material, size and shape
 - 14.3.1 How will the core be used for diagnosis? Therapeutics?
 - 14.3.2 Does this dictate the core material? Size?
 - 14.3.3 Does shape alter circulation time or target cell penetration?
 - 14.3.4. Evaluate size and shape of nanosized core by transmission (TEM) or scanning electron microscopy (SEM), or by atomic force microscopy (AFM)
 - 14.3.5 Evaluate size of complete NMS (other parts may not be electron dense) by dynamic light scattering (DLS)
 - 14.3.6 Evaluate materials present at each layer of construction by x-ray photoelectron spectroscopy (XPS)
- 14.4 Design NMS targeting and evaluate its effectiveness
 - 14.4.1 Choose cell surface biomarker on diseased cell. Is it unique or just elevated in expression (e.g. folate receptors)
 - 14.4.2 Choose targeting molecule type (antibody, peptide, aptamer...)
 - 14.4.3 Use flow or image cytometry to evaluate correctness of targeting to diseased cell using that biomarker system
 - 14.4.4 How much mis-targeting is anticipated?What are the consequences of mistargeting?
 - 14.4.5 Determine degree of mistargeting and consider the costs of misclassification
 - (e.g. how many normal cells are mis-targeted for each diseased cell successfully targeted)
 - 14.4.6 Based on the costs of misclassification, reconsider additional or alternative diseased cell biomarkers?
 - 14.4.7 Evaluate intracellular targeting by TEM if NMS is not fluorescent)
 - 14.4.8 Evaluate intracellular targeting by 3D confocal fluorescence microscopy (if NMS is fluorescent)
 - 14.4.9 Evaluate intracellular targeting by 2D fluorescence microscopy if confocal microcopy is unavailable

- 14.5 Choose zeta potential
 - 14.5.1 Determine required zeta potential for outer/inner layers
 - 14.5.2 Determine pH of encountered microenvironments
 - 14.5.3 Determine ionic strength of encountered microenvironments
 - 14.5.4 Evaluate suitability of zeta potential
 - 14.5.5 If signs of agglomeration, modify zeta potential of NMS.
 - 14.5.6 Are the NMS sticking to any surfaces or cell types?
 - 14.5.7 Are the NMS being rapidly filtered by the kidneys in-vivo?
- 14.6 Choose stealth molecule
 - 14.6.1 Determine required time of circulation
 - 14.6.2 Circulation time will determine dose needed
 - 14.6.3 Evaluate effectiveness of stealth molecule
 - 14.6.3.1 Do the NMS show signs of protein deposition in-vitro or in-vivo?
 - 14.6.3.2 Are the circulation times of the NMS adequate to sufficiently target the diseased cells in-vivo?
- 14.7 Choose type and intracellular target of therapy
 - 14.7.1 Eliminate or fix the diseased cells?
 - 14.7.2 If choice is elimination, choose appropriate therapeutic molecule that will accomplish this action
 - 14.7.3 If choice is to fix the diseased cells, what therapeutic molecule can accomplish this action and how will it be controlled?
 - 14.7.4 Choose molecular measure of effectiveness of therapy (induced apoptosis, restoration of normal phenotype, ...)
 - 14.7.5 Use single cell analysis by flow cytometry to measure that molecular measure, if cells are in suspension.
 - 14.7.6 Use scanning image cytometry to measure that molecular measure, if cells are attached
- 14.8 A few final words on design of integrated nanomedical systems
 - 14.8.1 We are still in the early days of designing nanomedical systems. Some of the necessary feedback we need for better designs awaits early clinical trials on human patients and volunteers
 - 14.8.2 We do not understand some of the processes well enough to fully control their design. Still it is important to know what is important even if can not yet control it!

References

1. Haglund, E., Seale-Goldsmith, M-M., Leary, J. F. "Design of Multifunctional Nanomedical Systems" Annals of Biomedical Engineering Annals of Biomedical Engineering, Vol. 37, No. 10, pp. 2048–2063 (2009).

2. Seale, M-M, Leary, J.F. "Nanobiosystems" WIREs (Wiley Interdisciplinary Reviews) Nanomed Nanobiotechnol 1: 553–567 (2009).