Energy Dissipation at the Nanoscale: from graphene to phase-change materials
Category
Published on
Abstract
Energy dissipation and conversion are important for the design of low-power electronics and energy-conversion systems. This is also a rich domain for both fundamental discoveries as well as technological advances. This talk will present recent highlights from our studies of dissipation in novel nanoelectronics based on graphene and phase-change materials. We have investigated both Joule heating and Peltier cooling in graphene electronics, and found that the latter could be tuned to partially remove the heat generated during operation. We have also examined the fundamental limits of data storage based on phase-change materials (rather than charge or spin), and demonstrated two orders of magnitude reduction of energy per bit. The results suggest new directions to improve nanoscale energy efficiency towards fundamental limits, through the design of geometry and materials.
Bio

Sponsored by
Cite this work
Researchers should cite this work as follows:
Time
Location
Burton Morgan 121, Purdue University, West Lafayette, IN