Band Structure Lab

By Samik Mukherjee1, Abhijeet Paul1, Neophytos Neophytou1, Raseong Kim1, Junzhe Geng1, Michael Povolotskyi1, Tillmann Christoph Kubis1, Arvind Ajoy1, Bozidar Novakovic1, Sebastian Steiger1, Michael McLennan1, Mark Lundstrom1, Gerhard Klimeck1

1. Purdue University

Computes the electronic structure of various materials in the spatial configuration of bulk (infinitely periodic), quantum wells (confined in one dimension, infinitely periodic in 2 dimensions), and wires (confined in 2 dimensions and infinitely...

Launch Tool

This tool version is unpublished and cannot be run. If you would like to have this version staged, you can put a request through HUB Support.

Archive Version 3.0.3
Published on 26 Jun 2013
Latest version: 3.1.12. All versions

doi:10.4231/D30K26B4N cite this

This tool is closed source.



Published on


Band structure Lab uses the sp3s*d5 tight binding method to compute E(k) for bulk, planar, and nanowire semiconductors. Using this tool, you can quickly compute and visualize the band structures of bulk semiconductors, thin films, and nanowires for various materials, growth orientations, and strain conditions. Physical parameters such as the bandgap and effective mass can also be obtained from the computed E(k). The bandedges and effective masses of the bulk materials and the nanostructures structures can be analyzed as a function of various strain conditions.

As explained in a related seminar, correct band structure is essential for modeling devices at the nano scale.

Chapter 5 of Quantum Transport by S. Datta (Cambridge, 2005)

Starting from version 2.0, the tool is now powered by a C code named OMEN. All previous versions were coded in Matlab.

Version 2.0 is a radical new release of the code and we are aware of several issues that are not fully stable. We very much appreciate feedback if certain features of the tool do not function properly. The last 1.X version of Band structure Lab is still available at the following link: Bandstructure Lab Version 1.2 (published).

Phyiscal Limitations:

Different Tight-binding models can give different electron and hole effective masses. This happens since different band models give different curvatures.Always a higher and more sophisticated band model will give better estimation of effective masses. Eg: sp3d5s* TB models give better estimate of effective mass compared to sp3s* TB models.

Known issues with Version 2.0:

bulk effective mass table is not correct for light, and heavy hole bands charge self-consistent calculation appears to be unstable for some devices nanowire dimensions exceeding 5-6nm in diameter appear to crash the simulations. More work is needed in the tool

Tool Versions

Powered by



Bandstructure Lab is based on the tight binding model of Boykin and Klimeck, and builds on the work of several Ph.D. students and other researchers:

M. Luisier, A. Paul... Core C simulator, beginning with Version 2.0
A. Paul, J. Geng... GUI development and OMEN integration of version 2.0, Code Matainance and improvements
M. Luisier, N. Neophytou, Y. Liu... Core Matlab simulator, prior to Version 2.0
A. Matsudaira, M. McLennan... GUI development of version 1.0
R. Kim... Led the integration effort of Version 1.0
J. Wang, N. Neophytou... Nanowire simulation theory
A. Rahman... Bulk and thin-film simulation theory

Sponsored by


Cite this work

Researchers should cite this work as follows:

  • For the tight-binding methodology: Gerhard Klimeck, Fabiano Oyafuso, Timothy B. Boykin, R. Chris Bowen, and Paul von Allmen, "Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots" (INVITED), Computer Modeling in Engineering and Science (CMES) Volume 3, No. 5 pp 601-642 (2002).
  • For nanowire model and results: Jing Wang, Anisur Rahman, Gerhard Klimeck and Mark Lundstrom, "Bandstructure and Orientation Effects in Ballistic Si and Ge Nanowire FETs", IEEE International Electron Devices Meeting (IEDM) Tech. Digest, pp. 537-540, Washington D. C., Dec. 5-7, 2005.
  • Samik Mukherjee; Abhijeet Paul; Neophytos Neophytou; Raseong Kim; Junzhe Geng; Michael Povolotskyi; Tillmann Christoph Kubis; Arvind Ajoy; Bozidar Novakovic; Sebastian Steiger; Michael McLennan; Mark Lundstrom; Gerhard Klimeck (2015), "Band Structure Lab," (DOI: 10.4231/D30K26B4N).

    BibTex | EndNote