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Negative Bias Temperature Instability (NBTI)

Issue: p-MOSFET in inversion VDD

VDD

VG=0

Degradation increases at higher T and higher 

(negative) stress bias

Parametric degradation (∆∆∆∆VT, ∆∆∆∆gm) in time,  

shows power law time dependence (~ A*tn)
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A Simple Physical Framework of NBTI 

Parametric (VT, gm, IDLIN) shift due to positive charges generated 

at the Si/SiO2 interface and/or at SiO2 bulk 

G

Generation of interface traps

Generation and subsequent 
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traps



Very Long Time Degradation

Universally observed long-time power-

law time exponent of n = 1/6 in 

“production quality” devices

Chen, TSMC, IRPS’05
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Dependence on Stress VG and Gate Leakage

Kimizuka, VLSI’99

NBTI not governed by gate voltage – higher 

NBTI (lower lifetime) for thinner oxide

IG

IB

I

-VG

No correlation with 

p-MOSFET inversion: 

Electron tunneling from 

gate to bulk, hole 

tunneling from bulk to gate
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Dependence on Stress EOX

NBTI governed by oxide electric fieldHuard, MR’05
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PMOS inversion shows similar NBTI 

as NMOS accumulation under similar 

oxide field (not same voltage)
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Parametric Degradation

Degradation in subthreshold slope (due 

to generation of interface traps, NIT)
Tsujikawa, MR’05

For a given ∆∆∆∆VT, larger ∆∆∆∆IDLIN for 

thinner oxide (lower overdrive)  

For a given ∆∆∆∆VT, ∆∆∆∆IDSAT > ∆∆∆∆IDLIN

(as 1 < θθθθ < 2)  
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Gate Insulator Material / Process Impact

Larger NBTI for SiON compared to 

SiO2 gate insulator

Mitani IEDM’02
NBTI reduction by suitable “process 

optimization” 

Increase in NBTI with higher N 

content in the gate insulator
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Sakuma 

IRPS’06

Tan EDL’04

∆∆∆∆VT = A*t
n



Post Stress NBTI Recovery

Recovery of 

degradation after 

removal of stress

Reisinger IRPS’06
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DC and AC Stress – Duty Cycle & Frequency

Recovery: Lower NBTI for AC stress

Nigam, IRPS’06

Independent of frequency when 

properly measured (no high f reflection)

Toshiba ST

IMEC NUS

Large spread of published data on 

duty cycle dependence, AC/DC ratio
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Motivation

Explanation of the following features:

Strong gate insulator process dependence 

Time evolution of degradation, prediction at long time 

Temperature and oxide field dependence of degradation

Recovery of degradation after DC stress

Understanding and estimation of defects responsible for 

degradation under accelerated stress condition

13

Recovery of degradation after DC stress

Duty cycle and frequency dependence under AC stress

Predictive modeling for lifetime projection – extrapolation of short-

time accelerated stress data to end-of-life under use condition
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Issues with Measure-Stress-Measure Approach

Lower magnitude & higher slope (n)  

due to recovery during measure delay

7x10
-2

Stress

Measurement
-VG (M)

-VG (S)

M-time

0.30

Increase in slope (n) with higher T and 

higher measure delay – artifact 

Unintentional recovery during measurement delay

Need “delay-free” measurement
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Ultra-Fast Measure-Stress-Measure (MSM) Method 

DCPS

PGU

IVC

DSO

16

Superpose fast triangular pulse on 

top of stress gate voltage – measure 

ID-VG (hence VT) using IVC-DSO   

Larger degradation and recovery 

magnitude for fast MSM compared to 

conventional (slow) MSM

Yang, VLSI’05



Ultra Fast MSM (Constant Current) Method 

Switch between stress & measure modes

ID kept constant, change in VT (due to 

NBTI stress) gets adjusted by VG

change, hence ∆∆∆∆VT ~ ∆∆∆∆VG

OPAMP based feedback to force constant 

current in measure mode

17
Reisinger, IRPS’06

Clear stress VG dependence of degradation

Weak T activation of degradation at short 

stress time 



On-The-Fly (OTF) IDLIN Method (Conventional) 

SMU

PGU Start ID sampling in SMU

Continue ID sampling without 

interrupting stress

780

SMU triggers PGU, PGU 

provides gate stress pulse

Delay in IDLIN0 measurement: 

time-zero delay t0 ~ 1ms
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Calculated Degradation from IDLIN Transient

∆∆∆∆V (t) = – (IDLIN (t) – IDLIN0 (1ms))/IDLIN0 (1ms)

Clear bias dependence for all time –

scalable to unique relation

Clear T dependence for all time –

scalable to unique relation10
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Conventional OTF Measurement Results

Power law time dependence of longer time data, with time 

exponent n ~ 0.14-0.15 for all stress bias and temperature

Stress VG and T

Different magnitude but similar time exponent for different film 

type (Details of GOX process dependence discussed later)
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Ultra-Fast On-The-Fly (UF-OTF) IDLIN Method

SMU

PGU

IVC

DSO

Start ID sampling (1µµµµs rate) using 

IVC-DSO, trigger PGU via SMU 

Current measurement: Short-time 

(1µµµµs-100ms) using IVC-DSO, long 

time (≥1ms) using SMU
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)
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Delay in IDLIN0 measurement: 

time-zero delay t0 ~ 1µµµµs
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Degradation: Impact of “Time-Zero” Delay

t0 delay: Time lag between application of 

stress VG and measurement of 1st IDLIN data 

PNO: Higher NBTI for lower t0 delay, t0

delay mostly impacts short-time data

RTNO: Large t0 impact on short- and long-

time data, higher NBTI compared to PNO
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Time Evolution of Long-time Degradation
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UF-OTF: Bias Dependence of Degradation

RTNO shows higher magnitude and 

lower bias dependent acceleration 

compared to PNO 
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UF-OTF: Temperature Dependence of Degradation

RTNO shows negligible T dependence 

at short time, weak T activation at 

longer time 
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Mobility Correction

Difference between ∆∆∆∆V (OTF) and ∆∆∆∆VT (MSM, 

peak gm method) due to mobility degradation

∆∆∆∆V read at VDD gives 1:1 correlation with ∆∆∆∆VT

OTF: Stress followed by recovery at VG=VDD
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Summary 

Recovery of NBTI degradation after removal of stress – issues 

with conventional “slow” MSM methods

Ultrafast MSM can provide VT shift with negligible artifacts, is 

useful for capturing long time degradation for lifetime 

determination, early part (t<1s) degradation cannot be studied

Constant current ultrafast MSM method is an alternative, but needs 

On-the-fly (OTF) IDLIN methods can be used to study degradation 

from 1ms (fast version) and 1µµµµs (ultra-fast version) time scale
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Important process dependent signatures observed in sub ms 

time scale by UF-OTF method (discussed in detail later) 

OTF IDLIN needs mobility correction to obtain VT shift

Constant current ultrafast MSM method is an alternative, but needs 

subthreshold slope correction to determine proper VT shift
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Background – The “Philosophy”

I-V measurements (previous section) influenced by generation 

of interface and bulk traps, plus trapping in pre-existing traps

G

How to independently 

estimate pre-existing traps? 

Eg: Flicker noise

How to independently 

29

S D

B

How to independently 

estimate interface and bulk 

trap generation? Eg: DCIV, 

Charge pumping, Flicker noise, 

LVSILC and SILC

Can different measurements be 

correlated?



Flicker Noise Measurement (Pre-stress)

Measure ID power spectral density versus frequency at low gate 

overdrive

p+p+

n

DC Supply + LPF

LNA + DSA

SVG = SID / gm

Flicker noise due to trapping/ 

detrapping of holes in oxide traps

Increase in pre-existing hole trap 

density with N density

High pre-existing hole trap density 

for certain (type-B) devices

density with N density
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DCIV Measurements

Sweep VG with S/D in F.B, measure ISUB

due to electron-hole recombination in 

traps at or near Si/SiO2 interface

n
p+p+

I
SUB

VF

Increase in ISUB due to stress seen in 

both SiO2 and SiON: Indicates trap 

generation at or near Si/SiO2 interface
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I
SUB

Stathis IRPS’04

Neugroschel, MR’07

Stress time

Stress 

time



DCIV Measurements 

Power law time dependence (A*tn), 

with n ~ 1/6 at long stress time for 

different stress VG and T

Neugroschel, MR’07

Reduction in ISUB after stress seen in 

both SiO2 and SiON: Indicates recovery 

of generated traps
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Campbell 

IRPS’06

SiON, 2.3nm

Neugroschel, MR’07

Stress

Recovery

of generated traps

Recovery 

time



Correlation of DCIV to I-V Measurements

Similar degradation and recovery signatures across different 

methods: ∆∆∆∆VT, ∆∆∆∆gm (from slow MSM I-V) and ∆∆∆∆IDCIV (DCIV)

Good correlation of ∆∆∆∆IDCIV to 

∆∆∆∆VT & ∆∆∆∆gm degradation 

during stress and recovery

3333Chen, IRPS’03



Charge Pumping Measurements

I
CP

p+p+

n

Pulse VG repetitively from inversion to 

accumulation, measure ISUB due to 

electron-hole recombination in traps at 

Si/SiO2 interface and inside SiO2 bulk

CP current increase (trap generation) with 

stress time  - power law time dependence -

larger n than I measurement
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Correlation of CP to I – V Measurements

Both ∆∆∆∆VT (slow MSM) and ∆∆∆∆ICP

shows power law time dependence 

and higher degradation for NO-SiON 

Both ∆∆∆∆VT (slow MSM) and ∆∆∆∆ICP

shows recovery of degradation, and 

larger recovery for NO-SiON 
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larger recovery for NO-SiON 

Mitani, MR’08



Impact of Stress on Flicker Noise

Increase in flicker noise after stress ����

generation of traps
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measure:|V
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1/f trend line

EOT=20A
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pre-stress

stress V
G
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O
C

                 stress t=4000s

S
V
G
 (
V
2
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z
) Similar voltage acceleration (ΓΓΓΓ) of ∆∆∆∆VT

(I-V), ∆∆∆∆NIT (CP) and ∆∆∆∆SVG (Noise)

Similar reduction of ΓΓΓΓ for ∆∆∆∆VT, ∆∆∆∆NIT and 

∆∆∆∆SVG with increase in N (trap generation 

near interface)
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Direct Comparison of Multiple Measurements

Two measurement methods  in 

sequence to determine ∆∆∆∆VT and 

∆∆∆∆NIT during stress and recovery

Measured degradation (during 

stress) depends on 

measurement sequence
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Measurement (stress off) 

triggers recovery, captured 

degradation depends on 

measurement time and gate 

voltage during measurement

Less issue if measured long time 

after stress is stopped, as 

recovery goes in log-time scale
Yang, VLSI’05



Comparison of CP and OTF-IDLIN (t0=1ms)

7x10
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On-the-fly Idlin

n=0.15

 (
V
)

As measured difference ~ 10X ���� NBTI not due to trap generation?

Band gap scan: Full for IDLIN, 

partial near midgap for CP
Final difference within ~ 20%

IDLIN CP
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Low Voltage (LV) SILC

Increase in gate leakage current after stressKimizuka, VLSI 00

Two peaks evolve with stress time at 

VG~VFB (1V) and VG ~ 0V

SILC (~VFB) due to electron tunneling from 

Si/SiO2 to SiO2/poly-Si interface traps

SILC (~0V) due to VB electron tunneling 

39Stathis, IRPS’04

LVSILC increase ~ 

Interface trap 

generation

Krishnan, IEDM’05

SILC (~0V) due to VB electron tunneling 

from poly-Si to Si/SiO2 interface traps



Anomalous NBTI Degradation?

Chen IRPS’05

Identical time exponent (n) at different 

(lower) stress VG – “normal NBTI”

Increase in n at higher stress VG –

contribution from additional physical 

process?
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Similar effect seen in thicker oxide
Mahapatra, IEDM’02
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Anomalous NBTI – Bulk Trap Generation

Increase in “n” 

also seen for 

high stress VB
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IG

IB

ISD

Hot Hole Induced Generation of Bulk Traps 

VB >0
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HH generation at higher VG

reproduced by VB>0 at lower VG

Increased n at VB>0, presence 
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Summary 

Differently processed devices show difference in pre-existing 

bulk traps (Flicker noise on pre-stressed devices)

NBTI: Generation of interface traps, charging of pre-existing and 

generated bulk traps 

Interface / near interface and bulk trap generation signatures 

shown by multiple measurements
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shown by multiple measurements

Evidence of interface / near interface trap generation 

from DCIV, high frequency charge pumping, LVSILC 

Evidence of bulk trap generation from HVSILC

Several important factors need to be carefully considered if 

attempts are made to compare multiple measurements
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Go to Part – II 


