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• In this lecture we develop the 
concept of subbands, introducing 
what is known as the “Density of 
States” (DOS)

• We have considered how 
subbands are formed in low 
dimensional structures.  It is not 
an abrupt process, even for bulk 
solids there is a quantization of 
the E-k space. However at this 
scale the granularity is extremely 
fine and is not experimentally 
perceptible.

• An excellent illustration of this process is 
the carbon nanotube

• The creation of subbands is not abrupt, 
going from nanotubes with very large 
diameters to those with small diameters, 
one would see a gradual, almost linear, 
process of creating experimentally 
discernable subbands.  Remember, 
subbands become important 
experimentally only when the energy 
difference between them becomes greater 
than or comparable to the thermal energy 
kBT
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• So, how does one go from an 
E-k diagram to an expression for 
the density of states (DOS)?

• We will derive DOS for graphite 
but first lets review the basic 
properties of graphite

• Recall it has a structure of…

• And a 
Brillouin 
Zone of 
the form…
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… where the above conduction points 
appear in the E-k diagram as…
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• Recall, given E = E0 ± h0 we Taylor expand h0
about the conduction points

• Expanding and solving
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• Finally we get

• The above parabolic 
approximation describes 
quite well the behavior of 
semiconducting and 
conducting nanotubes.  
This, of course, is true 
because all the “action”
(electrical and optical 
effects) tend to occur at 
or close to the 
conduction point.
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• The approximation, as 
shown,

is a Taylor expansion about 
the upper most conduction 
point…

• The resulting eigenvalues give rise to 
subband diagrams of the form (for discretized 
kx or ky in a nanotube)

• Recall, the same is done for silicon, we 
implement a parabolic expansion about the 
lowest point in the conduction band
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• Now, let’s move onto a 
derivation of the density of 
states in graphite

• To begin, how do we 
count the number of 
states?

• First assume graphite is a 
large sheet of dimensions 
Lx by Ly.  Therefore, the 
surface area of the solid is 
LxLy.
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• All states in this structure will be separated by the 
unit distances 2π/Lx and 2π/Ly (k-space)
• How many states will lie in a given k-space area 
“Ak”?

Note: Multiply by 2 to include spin degeneracy
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• Usually, we are interested in how 
many states lie within a region of radius 
k, such that

where s is the surface area of a 2-D 
material such as graphite

• By nature, of course, we wish to 
express N in terms of energy.  For 
graphite we use
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• To get the density of states simply 
take the derivative of N(E) with 
respect to E

• Thus, for graphite D(E) is linear with 
respect to energy

… this is exactly what people 
measure experimentally using a 
scanning tunneling microscope.
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• Note: In the case 
of graphite an 
isotropic constant 
energy contour 
was assumed 
(circle)

ky

kx

• This need not 
necessarily be 
the case, for 
Silicon the 
energy contour 
is an ellipse

and with some complication, D(E) may 
be solved in much the same manner.
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• So, what happens to the graphite 
DOS when we roll a graphite sheet 
into a carbon nanotube?

• Recall, when rolling in the    
direction ky becomes discrete.  Such 
that for the circumferential vector
it is required that

And the resulting ‘zig-zag’ nanotube
is only conducting if m is a multiple of 
3, since
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• A general energy expression 
for a    fold, zig-zag, nanotube
is
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• As shown in previous lectures, we can draw the 
subbands for various values of v…
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• Because the nanotube is a 1-D 
structure, or quantum wire, to count 
the number of states we look at how 
many states lie in a distance k from 
the origin.  Formally, for the zig-zag
nanotube, this is
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Note: The 
extra factor 

of 2 is 
added to 
count the 
+ve and –
ve k states

• To express the number of states as a 
function of energy assume E0 = 0, such 
that

• Finally the density of states for a 
particular sub-band is
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• To get the total density of states we 
must sum over all sub-bands
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• Now, what does the 
density of states for a 
carbon nanotube look like?
• Recall, the linear DOS for 
graphite…
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• For the nanotube something 
similar occurs, with the 
exception of spikes that 
appear at every subband

• Note: for semiconducting nanotubes there is 
no  subband around Fermi level and so the 
density of states is zero for a region about E0
(this is marked as the “semiconducting gap”
on the above diagram)
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• The semiconducting DOS 
gap depends on the size of a 
nanotube.  Those with small 
diameters have a large gap 
and those with large diameters 
have a small gap

• Hence, nanotubes with a 
large diameter begin to look 
like graphite!  This is especially 
true at high temperatures, the 
jagged appearance of D(E) is 
made smooth via convolution 
with kBT

Big Nanotube DOS
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