On Monday July 6th, the nanoHUB will be intermittently unavailable due to scheduled maintenance. All tool sessions will be shut down early in the morning. Home directories and tools will be unavailable most of the day. We apologize for any inconvenience this may cause. close

Support

Support Options

Submit a Support Ticket

 

Carrier Concentration

By Stephanie Michelle Sanchez1, Ivan Santos1, Stella Quinones1

1. University of Texas at El Paso

Calculate the carrier concentration for a semiconductor material as a function of doping and temperature.

Launch Tool

Session invocation is currently disabled.

Archive Version 1.0
Published on 21 Jun 2012
Latest version: 2.0. All versions

doi:10.4231/D3M61BP3Q cite this

This tool is closed source.

Category

Tools

Published on

Abstract

The tool calculates the electron and hole concentration for a semiconductor material for five special cases: intrinsic, N-Type, P-Type, high temperature, and compensated.

Powered by

UTEP NCN Research Team

Sponsored by

This project is supported by NSF NCN Grant EEC-0634750.

References

[1] R. Pierret, Semiconductor Device Fundamentals. Addison Wesley Longman, 1996. [2] C. C. Hu, Modern Semiconductor Devices for Integrated Circuits. Upper Saddle River, NJ: Pearson, 2010. [3] B. G. Streetman, S. Banerjee, Solid State Electronic Devices. 5th Edition. Upper Saddle River, NJ: Pearson, 2004.

Cite this work

Researchers should cite this work as follows:

  • Stephanie Michelle Sanchez; Ivan Santos; Stella Quinones (2014), "Carrier Concentration," http://nanohub.org/resources/carrierconc. (DOI: 10.4231/D3M61BP3Q).

    BibTex | EndNote

Tags

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.