Support

Support Options

Submit a Support Ticket

 

Carbon Dioxide Gating in Silk Cocoon

By sunil kumar meena

Indian Institute of Technology Kanpur

Published on

Abstract

Silk is the generic name given to the fibrous proteins spun by a number of arthropods. During metamorphosis, the larva of the silk producing arthropods excrete silk-fiber from its mouth and spun it around the body to form a protective structure called cocoon. An adult moth emerges out from the cocoon after the dormant phase (pupal phase) varying from 2 weeks to 9 months. It is intriguing how CO2/O2 and ambient temperature are regulated inside the cocoon during the development of the pupa. Here we show that the cocoon membrane is asymmetric, it allows preferential gating of CO2 from inside to outside and it regulates a physiological temperature inside the cocoon irrespective of the surrounding environment temperature. We demonstrate that under simulating CO2 rich external environment, the CO2 does not diffuse inside the cocoon. Whereas, when CO2 was injected inside the cocoon, it diffuses out in 20 s, indicating gating of CO2 from inside to outside the membrane. Removal of the calcium oxalate hydrate crystals which are naturally present on the outer surface of the cocoon affected the complete blockade of CO2 flow from outside to inside suggesting its role to trap most of the CO2 as hydrogen bonded bicarbonate on the surface. The weaved silk of the cocoon worked as the second barrier to prevent residual CO2 passage. Furthermore, we show that under two extreme natural temperature regime of 5 and 50 °C, a temperature of 25 and 34 °C respectively were maintained inside the cocoons. Our results demonstrate, how CO2 gating and thermoregulation helps in maintaining an ambient atmosphere inside the cocoon for the growth of pupa. Such natural architectural control of gas and temperature regulation could be helpful in developing energy saving structures and gas filters.

Credits

Manas Roy(1) Sunil Kumar Meena(2) Tejas Sanjeev Kusurkar(3) Sushil Kumar Singh(4) Niroj Kumar Sethy(5) Kalpana Bhargava(5) Sabyasachi Sarkar(1) Mainak Das(3)

Sponsored by

DRDO india

References

1. Trouvelot L (1867) Am Nat 1(2):85–94 CrossRef

2. Packard AS (1898) A text book of entomology. The Macmillan Company, New York

3. Johnson SA (1989) Silkworms. First Avenue Editions, Minneapolis

4. Voigt WH (1965) Z Zellforsch Mikrosk Anat 66(4):571–582 SpringerLink ChemPort

5. Voigt WH (1965) Z Zellforsch Mikrosk Anat 66(4):548–570 SpringerLink ChemPort

6. Prudhomme JC, Couble P (1979) Biochimie 61(2):215–227 CrossRef ChemPort

7. Vollrath F (1992) Sci Am 266:70–76 CrossRef ChemPort

8. Vollrath F (1999) Int J Biol Macromol 24(2–3):81–88 CrossRef ChemPort

9. Kirshboim S, Ishay JS (2000) Comp Biochem Physiol A Mol Integr Physiol 127(1):1–20 CrossRef ChemPort

10. Shao Z, Vollrath F (2002) Nature 418(6899):741 CrossRef ChemPort

11. Joseph Z, Ishay JS (2004) J Electron Microsc (Tokyo) 53(3):293–304 CrossRef

12. Yonemura N, Sehnal FJ (2006) Mol Evol 63(1):42–53 SpringerLink ChemPort

13. Chen F, Porter D, Vollrath F (2010) Phys Rev E Stat Nonlin Soft Matter Phys 82(4 Pt 1):041911 CrossRef

14. Pandiarajan J, Cathrin BP, Pratheep T, Krishnan M (2011) Rapid Commun Mass Spectrom 25(21):3203–3206 CrossRef ChemPort

15. Teshome A, Vollrath F, Raina SK, Kabaru JM, Onyari J (2012) Int J Biol Macromol 50(1):63–68 CrossRef ChemPort

16. Kundu SC, Kundu B, Talukdar S, Bano S, Nayak S, Kundu J, Mandal BB, Bhardwaj N, Botlagunta M, Dash BC, Acharya C, Ghosh AK (2012) Biopolymers 97(6):455–467 CrossRef ChemPort

17. Chen F, Porter D, Vollrath F (2012) J R Soc Interface. doi:10.1098/rsif.2011.0887

18. Chen F, Porter D, Vollrath F (2012) Acta Biomater 8(7):2620–2627 CrossRef ChemPort

19. Blossman-Myer B, Burggren WW (2010) Comp Biochem Physiol A Mol Integr Physiol 155(2):5 CrossRef

20. Ishay JS, Barenholz-Paniry V (1995) J Insect Physiol 41(9):7 CrossRef

21. Huang X, Liu G, Wang X (2012) Adv Mater 24(11):1482–1486 CrossRef ChemPort

22. Nakamoto K (1986) Infrared and Raman Spectra of inorganic and coordinated compounds, 4th edn. Wiley, New York

23. Wilaiwan S, Chirapha B, Yaowalak S, Prasong S (2010) J Appl Sci 10:575–579 CrossRef ChemPort

24. Dewitz J (1921) Zoologische Jahrbucher Abteilung fuer Allgemeine Zoologie und Physiologie der Tiere 38:365–404

25. Ohnishi E, Takahashi SY, Sonobe H, Hayashi T (1968) Science 160(3829):2 CrossRef

26. Teigler DJ, Arnott HJ (1972) Nature 235(5334):166–167 CrossRef ChemPort

27. Vogel AI (1961) A text book of quantitative inorganic analysis, 3rd edn. Longmans, London

28. Danks HV (2004) Eur J Entomol 101:433–437

Publications

Springer Berlin / Heidelberg

Cite this work

Researchers should cite this work as follows:

  • Jayaraman, K. S. (2012) Cocoon formula for green buildings. Nature India

  • sunil kumar meena (2012), "Carbon Dioxide Gating in Silk Cocoon," http://nanohub.org/resources/15008.

    BibTex | EndNote

Tags

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.