
ECE 595Z: Digital Systems Design Automation, Spring 2011

The Timeline

1996
GRASP

Conflict Driven Learning,
Non-chornological Backtracking

≈1k Var
1960
DP

≈10 var

1986
BDD

≈ 100 Var

1992
GSAT

≈ 300 Var

1996
Stålmarck
≈ 1k Var

1988
SOCRATES
≈ 3k Var

1994
Hannibal
≈ 3k Var

1962
DLL

≈ 10 var

1952
Quine
≈ 10 var

J. P. Marques-Silva and K. A. Sakallah, "GRASP -- A New Search Algorithm for
Satisfiability,“ Proc. ICCAD 1996.

J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm for
Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521, 1999.

1

ECE 595Z: Digital Systems Design Automation, Spring 2011

GRASP

• Based on DPLL (backtracking) algorithm
• Key concepts: Conflict driven learning and non-

chronological backtracking
• Bayardo and Schrag’s RelSAT concurrently

proposed conflict driven learning
 R. J. Bayardo Jr. and R. C. Schrag “Using CSP look-back

techniques to solve real world SAT instances.” Proc. AAAI, pp.
203-208, 1997

2

ECE 595Z: Digital Systems Design Automation, Spring 2011

Conflict Driven Learning

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

3

ECE 595Z: Digital Systems Design Automation, Spring 2011

Conflict Driven Learning

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0

x1=0

4

ECE 595Z: Digital Systems Design Automation, Spring 2011

Conflict Driven Learning

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x4=1

x1=0

5

ECE 595Z: Digital Systems Design Automation, Spring 2011

Conflict Driven Learning

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1

x4=1

x3=1 x1=0

6

ECE 595Z: Digital Systems Design Automation, Spring 2011

Conflict Driven Learning

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1, x8=0

x4=1

x3=1

x8=0

x1=0

7

ECE 595Z: Digital Systems Design Automation, Spring 2011

Conflict Driven Learning

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1, x8=0, x12=1

x4=1

x12=1

x3=1

x8=0

x1=0

8

ECE 595Z: Digital Systems Design Automation, Spring 2011

Conflict Driven Learning

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0
9

ECE 595Z: Digital Systems Design Automation, Spring 2011

Conflict Driven Learning

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

x11=1

10

ECE 595Z: Digital Systems Design Automation, Spring 2011

Conflict Driven Learning

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1 x4=1

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

11

ECE 595Z: Digital Systems Design Automation, Spring 2011

Conflict Driven Learning

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1, x9= 0, 1 x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

12

ECE 595Z: Digital Systems Design Automation, Spring 2011

Conflict Driven Learning

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x7

x3=1∧x7=1∧x8=0 → conflict

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1 x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

13

ECE 595Z: Digital Systems Design Automation, Spring 2011

Conflict Driven Learning

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x7

Add conflict clause: x3’+x7’+x8

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1 x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1 x3=1∧x7=1∧x8=0 → conflict

14

ECE 595Z: Digital Systems Design Automation, Spring 2011

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

Conflict Driven Learning

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1 x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

x3’+x7’+x8

Add conflict clause: x3’+x7’+x8

x3=1∧x7=1∧x8=0 → conflict

Conflict clause

15

ECE 595Z: Digital Systems Design Automation, Spring 2011

x7 + x8 + x12’

Conflict Driven Learning

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
x3’ + x7’ + x8

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

Backtrack and try x7 = 0

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

x11=1

x10=0

x10=1
x7=0

16

x7=0∧x8=0∧x12=1 → conflict

ECE 595Z: Digital Systems Design Automation, Spring 2011

Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
x3’ + x7’ + x8
x7 + x8 + x12’

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

Backtrack to the decision level of x3=1,
bypassing x2 since it is irrelevant

x4=1

x12=1

x3=1

x8=0

x1=0

17

ECE 595Z: Digital Systems Design Automation, Spring 2011

GRASP - General Principles
• Conventional Approach: Backtrack

based on conflicts

• New Approach: Learning from conflicts
(avoid repeating the same mistakes)

• Conventional Approach: Backtrack to
the last decision

• New Approach: Backtracking based on
analysis of the conflict (non-
chronological)

18

ECE 595Z: Digital Systems Design Automation, Spring 2011

Learning Conflict Clauses :
What’s the big deal?

• Significantly prune the
search space - learned
clause helps repeat
mistakes!

• Useful in generating
future implications nad
conflict clauses.

• Practical consideration –
additional clauses require
more memory
– Limit the size of the clause
– Limit the “lifetime” of a

clause, will be removed
after some time

x
2

x
1

x
4

x
3

x
4

x
3

x
5

x
5

x
5

x
5

Conflict clause: x1’+x3+x5’

19

ECE 595Z: Digital Systems Design Automation, Spring 2011

SAT becomes practical!

• Conflict driven learning greatly increased the
capacity of SAT solvers (several thousand variables)
for structured problems

• Realistic applications became feasible
– Typical EDA applications that can make use of SAT

• ATPG
• Circuit verification
• FPGA routing
• Covering (MIN-SAT)
• …

• Research direction shifted towards more efficient
implementations

20

ECE 595Z: Digital Systems Design Automation, Spring 2011

The Timeline

2001
Chaff

Efficient BCP and decision making
≈10k var

1996
GRASP
≈1k Var

1986
BDD

≈ 100 Var

1992
GSAT

≈ 300 Var

1996
Stålmarck
≈ 1k Var

1962
DLL

≈ 10 var

1952
Quine
≈ 10 var

1960
DP

≈10 var

1988
SOCRATES
≈ 3k Var

1994
Hannibal
≈ 3k Var

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik,“Chaff: Engineering
an Efficient SAT Solver” Proc. Design Automation Conference, 2001.

21

ECE 595Z: Digital Systems Design Automation, Spring 2011

Chaff Philosophy

• Make the core operations fast
– Most time-consuming parts of a SAT solver

• Boolean Constraint Propagation (BCP) and Decision
Making

• Emphasis on coding efficiency
• Emphasis on optimizing data cache behavior
• As always, good search space pruning (i.e. conflict

resolution and learning) is important

22

ECE 595Z: Digital Systems Design Automation, Spring 2011

Motivation

1dlx_c_mc_ex_bp_f
Num Variables 776
Num Clauses 3725
Num Literals 10045

Z-Chaff SATO GRASP
Decisions 3166 3771 1795

Instructions 86.6M 630.4M 1415.9M

L1/L2
accesses

24M / 1.7M 188M / 79M 416M / 153M

% L1/L2
misses

4.8% / 4.6% 36.8% / 9.7% 32.9% / 50.3%

Seconds 0.22 4.41 11.78

23

Not sufficient to minimize decisions, need to consider implementation efficiency

ECE 595Z: Digital Systems Design Automation, Spring 2011

Motivation (contd.)

• Need to think “differently” for large problem scales!

• Industrial Microprocessor Verification
– Bounded Model Checking, 14 cycle behavior

• Statistics
– 1 million variables
– 10 million literals initially

• 200 million literals including added conflict clauses
• 30 million literals finally

– 4 million clauses (initially)
• 200K clauses added

– 1.5 million decisions
– 3 hours run time

24

ECE 595Z: Digital Systems Design Automation, Spring 2011

Efficient Boolean Constraint Propagation
(BCP)

• Think of data
structures used in a
SAT solver

• Formula : List of
clauses

• Clause : List of literals
• Variable : State + List

of clauses it appears in
(possibly separate lists
for positive and
negative phase)

• At any point during the
search, how do you
identify unit clauses?

for each clause {
 count = 0;
 for each literal in clause {
 if (unassigned) count++;
 if (1) { not unit clause; }
 }
 if(count == 1) unit clause;
 else not unit clause;
}

Simple approach:

Better approach (how would you do it?):

25

ECE 595Z: Digital Systems Design Automation, Spring 2011

Efficient BCP : How Chaff does it

What “causes” an implication? When can it occur?
• All literals in a clause but one are False

– (v1 + v2 + v3): implied cases: (0 + 0 + v3) or (0 + v2 + 0) or
(v1 + 0 + 0)

• For an N-literal clause, this can only occur after N-1 of
the literals are False

• So, we could completely ignore the first N-2
assignments to this clause

• In reality, we pick two literals in each clause to “watch”
and thus can ignore any assignments to the other
literals in the clause.

– Example: (v1 + v2 + v3 + v4 + v5)
– (v1=X + v2=X + v3=? {i.e. X or 0 or 1} + v4=? + v5=?)

watch
26

ECE 595Z: Digital Systems Design Automation, Spring 2011

BCP in Chaff (1/8)

• Invariants
– Each clause has two watched literals.
– If a clause can become newly implied via any sequence of

assignments, then this sequence must include an
assignment of one of the watched literals to F.
• Example again: (v1 + v2 + v3 + v4 + v5)
• (v1=X + v2=X + v3=? + v4=? + v5=?)

• BCP consists of identifying implied clauses (and
the associated implications) while maintaining the
“Invariants”

27

ECE 595Z: Digital Systems Design Automation, Spring 2011

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v1’

BCP in Chaff (2/8)

• Let’s illustrate this with an example:

28

ECE 595Z: Digital Systems Design Automation, Spring 2011

BCP in Chaff (2.1/8)

• Let’s illustrate this with an example:

watched
literals

One literal clause breaks invariants: handled
as a special case (ignored hereafter)

 Initially, we identify any two literals in each clause as the watched ones
 Clauses of size one are a special case

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v1’

29

ECE 595Z: Digital Systems Design Automation, Spring 2011

BCP in Chaff (3/8)

• We begin by processing the assignment v1 = F (which is
implied by the size one clause)

State:(v1=F)

Pending:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

30

ECE 595Z: Digital Systems Design Automation, Spring 2011

BCP in Chaff (3.1/8)

• We begin by processing the assignment v1 = F (which is
implied by the size one clause)

 To maintain our invariants, we must examine each clause where the
assignment being processed has set a watched literal to F.

State:(v1=F)

Pending:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

31

ECE 595Z: Digital Systems Design Automation, Spring 2011

BCP in Chaff (3.2/8)

• We begin by processing the assignment v1 = F (which is
implied by the size one clause)

 To maintain our invariants, we must examine each clause where the
assignment being processed has set a watched literal to F.

 We need not process clauses where a watched literal has been set to T,
because the clause is now satisfied and so can not become implied.

State:(v1=F)

Pending:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

32

ECE 595Z: Digital Systems Design Automation, Spring 2011

BCP in Chaff (3.3/8)

• We begin by processing the assignment v1 = F (which is
implied by the size one clause)

 To maintain our invariants, we must examine each clause where the
assignment being processed has set a watched literal to F.

 We need not process clauses where a watched literal has been set to T,
because the clause is now satisfied and so can not become implied.

 We certainly need not process any clauses where neither watched literal
changes state (in this example, where v1 is not watched).

State:(v1=F)

Pending:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

33

ECE 595Z: Digital Systems Design Automation, Spring 2011

BCP in Chaff (4/8)

• Now let’s actually process the second and third clauses:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

State:(v1=F)

Pending:

34

ECE 595Z: Digital Systems Design Automation, Spring 2011

BCP in Chaff (4.1/8)

• Now let’s actually process the second and third clauses:

 For the second clause, we replace v1 with v3’ as a new watched literal.
Since v3’ is not assigned to F, this maintains our invariants.

State:(v1=F)

Pending:

State:(v1=F)

Pending:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

35

ECE 595Z: Digital Systems Design Automation, Spring 2011

BCP in Chaff (4.2/8)

• Now let’s actually process the second and third clauses:

 For the second clause, we replace v1 with v3’ as a new watched literal.
Since v3’ is not assigned to F, this maintains our invariants.

 The third clause is implied. We record the new implication of v2’, and add it
to the queue of assignments to process. Since the clause cannot again
become newly implied, our invariants are maintained.

State:(v1=F)

Pending:

State:(v1=F)

Pending:(v2=F)

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

36

ECE 595Z: Digital Systems Design Automation, Spring 2011

BCP in Chaff (5/8)

• Next, we process v2’. We only examine the first 2 clauses.

 For the first clause, we replace v2 with v4 as a new watched literal. Since v4
is not assigned to F, this maintains our invariants.

 The second clause is implied. We record the new implication of v3’, and add
it to the queue of assignments to process. Since the clause cannot again
become newly implied, our invariants are maintained.

State:(v1=F, v2=F)

Pending:

State:(v1=F, v2=F)

Pending:(v3=F)

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

37

ECE 595Z: Digital Systems Design Automation, Spring 2011

BCP in Chaff (6/8)

• Next, we process v3’. We only examine the first clause.

 For the first clause, we replace v3 with v5 as a new watched literal. Since v5
is not assigned to F, this maintains our invariants.

 Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. Both v4 and v5 are unassigned. Let’s say we
decide to assign v4=T and proceed.

State:(v1=F, v2=F, v3=F)

Pending:

State:(v1=F, v2=F, v3=F)

Pending:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

38

ECE 595Z: Digital Systems Design Automation, Spring 2011

BCP in Chaff (7/8)

• Next, we process v4. We do nothing at all.

 Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. Only v5 is unassigned. Let’s say we decide to
assign v5=F and proceed.

State:(v1=F, v2=F, v3=F,
v4=T)

State:(v1=F, v2=F, v3=F,
v4=T)

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

39

ECE 595Z: Digital Systems Design Automation, Spring 2011

BCP in Chaff (8/8)

• Next, we process v5=F. We examine the first clause.

 The first clause is implied. However, the implication is v4=T, which is a
duplicate (since v4=T already) so we ignore it.

 Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. No variables are unassigned, so the problem is
SAT, and we are done.

State:(v1=F, v2=F, v3=F,
v4=T, v5=F)

State:(v1=F, v2=F, v3=F,
v4=T, v5=F)

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

40

ECE 595Z: Digital Systems Design Automation, Spring 2011

Summary: BCP in Chaff

• Maintain two “watched” literals for
each clause

• During search, process the clause for
BCP only if one of the watched literals
is set to False
– Two cases

• Unit clause
• Find a new literal to be the watched literal

41

ECE 595Z: Digital Systems Design Automation, Spring 2011

Decision Heuristics – Conventional
Wisdom

• Dynamic Largest Individual Sum (DLIS)
– Simple and intuitive: At each decision, choose the assignment

that satisfies the most unsatisfied clauses.
– Considerable work is required to maintain the statistics

necessary for this heuristic:
• Must touch *every* clause that contains a literal that has been set

to true. Often restricted to initial (not learned) clauses.
• Maintain “sat” counters for each clause
• When counters transition 01, update rankings.
• Need to reverse the process for undoing an assignment.

– The total effort required for this and similar decision
heuristics is quite high.

• Look ahead algorithms are “smarter” but even more
compute intensive
 C. Li, Anbulagan, “Look-ahead versus look-back for

satisfiability problems” Proc. Int. Conference on Principles and
Practice of Constraint Programming, 1997.

42

ECE 595Z: Digital Systems Design Automation, Spring 2011

Chaff Decision Heuristic - VSIDS
• Variable State Independent Decaying Sum

– Each variable has two counters for each
polarity

– Only increment counts when new clauses
are added to the CNF.

– Periodically, divide all counts by a constant.
– Variable and polarity with highest rank

(counter value) chosen for branching.
• Ties broken randomly

• Quasi-static:
– Static : doesn’t depend on variable state
– VSIDS rank gradually changes as new

clauses are added
• Decay causes bias toward variables that

appear in *recent* conflict clauses.

• Works reasonably in terms of # decisions
– Much more efficient than state dependent

heuristics

Appears in
Conflict
Clause

Time

Rank

43

ECE 595Z: Digital Systems Design Automation, Spring 2011

General Principles
• Need to consider implementation cost

of a heuristic in addition to what it
“saves”.

• In the context of SAT, tradeoff between
searching more and spending more
time reasoning

Search Reasoning

44

ECE 595Z: Digital Systems Design Automation, Spring 2011

Notable Recent Advances

• MiniSAT (http://minisat.se)
– Continues philosophy of minimalistic design and focus on

implementation efficiency
• " An Extensible SAT-solver,“ Niklas Een, Niklas Sörensson,

SAT 2003
• " MiniSat — A SAT Solver with Conflict-Clause Minimization,“

Niklas Een, Niklas Sörensson, SAT 2005 (poster).

• Berkmin (http://eigold.tripod.com/BerkMin.html)
– Improved heuristics for picking decision variables and

clause database management
• E.Goldberg, Y.Novikov, “BerkMin: a Fast and Robust SAT-Solver,”

Design, Automation, and Test Europe, pp. 142-149, 2002.

• SatELite
– Pre-processing formula to make solver more efficient

• “Effective Preprocessing in SAT through Variable and Clause
Elimination,” Niklas Een, Armin Biere, SAT 2005.

45

ECE 595Z: Digital Systems Design Automation, Spring 2011

Summary

• Rich history of advances in SAT.
• Application drivers result in great progress.
• Need to account for computation cost of advanced

heuristics
• Need to match algorithms with underlying

computing platform architectures.
• Specific problem classes can benefit from

specialized algorithms
• Much room to learn and improve!

46

	The Timeline
	GRASP
	Conflict Driven Learning
	Conflict Driven Learning
	Conflict Driven Learning
	Conflict Driven Learning
	Conflict Driven Learning
	Conflict Driven Learning
	Conflict Driven Learning
	Conflict Driven Learning
	Conflict Driven Learning
	Conflict Driven Learning
	Conflict Driven Learning
	Conflict Driven Learning
	Conflict Driven Learning
	Conflict Driven Learning
	Non-chronological Backtracking
	GRASP - General Principles
	Learning Conflict Clauses : �What’s the big deal?
	SAT becomes practical!
	The Timeline
	Chaff Philosophy
	Motivation
	Motivation (contd.)
	Efficient Boolean Constraint Propagation (BCP)
	Efficient BCP : How Chaff does it
	BCP in Chaff (1/8)
	BCP in Chaff (2/8)
	BCP in Chaff (2.1/8)
	BCP in Chaff (3/8)
	BCP in Chaff (3.1/8)
	BCP in Chaff (3.2/8)
	BCP in Chaff (3.3/8)
	BCP in Chaff (4/8)
	BCP in Chaff (4.1/8)
	BCP in Chaff (4.2/8)
	BCP in Chaff (5/8)
	BCP in Chaff (6/8)
	BCP in Chaff (7/8)
	BCP in Chaff (8/8)
	Summary: BCP in Chaff
	Decision Heuristics – Conventional Wisdom
	Chaff Decision Heuristic - VSIDS
	General Principles
	Notable Recent Advances
	Summary

