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Timing Optimization in Logic Synthesis 

• Circuit re-structuring 
– Get a good global structure for the 

circuit 
– Possible to do this during technology-

independent optimization or after 
technology mapping 

• E.g., Balanced tree vs. chain 

• Technology mapping for delay 
– We have already seen how tree 

mapping works 
– Delay budgeting across trees and 

design hierarchy 
• Fanout optimization (implementation 

of buffer trees) 
• Circuit sizing 
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Circuit Re-structuring for Delay 

• Techniques used for circuit re-structuring can be 
viewed as generalizations of fast adder 
architectures 
– Carry lookahead → Collapsing and re-structuring / 

height reduction 
– Carry select → Generalized select transform 
– Carry bypass → Generalized bypass transform 
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Ripple Carry → Carry Lookahead Adder 

• Recall how you designed a carry lookahead 
adder? 
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Ripple Carry → Carry Lookahead Adder 

• What are we really doing here? 
– Collapsing the critical path and re-

structuring it! 
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Re-structuring for Delay: Height 
Reduction 

• The same concept can be applied to 
arbitrary Boolean networks! 
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Re-structuring for Delay: Height 
Reduction 

• Key idea: Collapsing a critical region and re-
structuring based on its input/output constraints 
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Collapsing and re-structuring methodology 

• Questions 
– Which regions to re-structure? 
– How to re-synthesize? 
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while(circuit timing improves) { 
 select logic region to transform; 
 collapse selected region; 
 re-synthesize for better timing; 
} 

K. J. Singh, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli, “Timing optimization of combinational 
logic”, Proc. Int. Conf. on Computer-Aided Design, pp. 282-285,1988. 
H. J. Touati, H. Savoj, R. K. Brayton, “Delay Optimization of Combinational Logic Circuits By Clustering 
and Partial Collapsing,” Proc. Int. Conf. on Computer-Aided Design, pp. 188-191, 1991 
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Identifying Regions to Re-structure 
• Start by identifying the ε-

critical network 
• Key idea: Cut-set (or 

separator-set) of a graph 
– Set of vertices which, if 

removed, partition the graph 
into disjoint sub-graphs 

• Find a minimum-cost cut-set 
of the ε-critical network and 
collapse nodes in the cut-set 
– Cost computed based on 

• Potential for delay 
improvement 

• Estimate of logic duplication 

• Min-cut / Max-flow algorithm 
can be used to identify 
minimum cost cut-set 
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Identifying Regions to Re-structure 
• How can we tell whether 

there is potential for delay 
optimization at a node? 
– Look at the delay profile of 

the candidate region that is to 
be collapsed 

• Arrival time at input vs. delay 
through from the input to the 
region output 
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Timing-driven Re-structuring 
• Collapse the nodes in the 

cut-set with their 
transitive fanins (up to 
some logic depth) 

• Re-synthesize collapsed 
region 
– Factoring 
– Decomposition 

• Key idea: Later arriving 
inputs are used closer to 
the outputs, and hence 
experience lower delay 
through the region 
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Timing-driven Re-structuring 
• Timing-driven de-composition 

– Efficient (greedy) algorithm to do this for AND, OR trees 
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timing_driven_decomp(f) { 
    while(|inputs(f)| > 2) { 
        select two earliest arriving inputs li,lj  
        create a gate g with inputs li,lj 
        substitute g into f 
        compute delay at g 
    } 
} 

abcd 
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0 
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Example 

Note: This algorithm is provably optimal! 
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Circuit Re-structuring for Delay 

• Techniques used for circuit re-structuring can be 
viewed as generalizations of fast adder 
architectures 
– Carry lookahead → Collapsing and re-structuring / height 

reduction 
– Carry bypass → Generalized bypass transform 
– Carry select → Generalized select transform 
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Ripple Carry → Carry Bypass Adder 

• How can we generalize this? 
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Generalized Bypass Transform (GBX) 

• Key Idea: Make the longest path false 
– Through the introduction of a “bypass” path 
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Patrick C. McGeer, Robert K. Brayton, Alberto L. Sangiovanni-Vincentelli, Sartaj Sahni, “Performance Enhancement 
through the Generalized Bypass Transform,” Int. Conf. on Computer-Aided Design, 1991, pp. 184-187. 
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Circuit Re-structuring for Delay 

• Techniques used for circuit re-structuring can be 
viewed as generalizations of fast adder 
architectures 
– Carry lookahead → Collapsing and re-structuring / height 

reduction 
– Carry bypass → Generalized bypass transform 
– Carry select → Generalized select transform 
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Carry Select Adder 

• Compute output assuming carry = 0 and carry = 1, 
and select correct value once carry is available 
– Benefit: Carry-in sees only MUX delay 
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Generalized Select Transform (GST) 
• Key idea: Co-factor w.r.t. late arriving signal 
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GBX vs. GST 
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GBX vs. GST 
• Select transform appears to be more area efficient, but.. 

– Boolean difference often more efficiently formed in practice 

• Both transforms have similar impact on delay 
• Can reuse parts of the duplicated logic for multiple fanouts in 

GST 
– Need one MUX per fanout 
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Summary: Timing Optimization 

• Variety of methods for delay 
optimization 

• No single technique dominates  
• When applied to ripple-carry adder get 

– Carry-lookahead adder (height reduction) 
– Carry-bypass adder (Generalized Bypass 

Transform) 
– Carry-select adder (Generalized Select 

Transform) 
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Suggested Reading 

• De Micheli, Chapter 8.6 
• Selected publications (available on blackboard) 

– H. Chen, and N. Du, “Path sensitization in critical path problem,” IEEE 
Transactions on Computer-Aided Design, vol. 12, no. 2, pp. 196 – 207, Feb. 1993. 

– S. Devadas, K. Keutzer, and S. Malik, “Delay Computation in Combinational Logic 
Circuits: Theory and Algorithms”, Proc. Int. Conf. on Computer-Aided Design, pp. 
176-179, 1991. 

– Patrick C. McGeer, Alexander Saldanha, Paul R. Stephan, Robert K. Brayton, 
Alberto L. Sangiovanni-Vincentelli: Timing Analysis and Delay-Fault Test 
Generation using Path-Recursive Functions. ICCAD 1991 

– Patrick C. McGeer , Robert K. Brayton, Integrating Functional and Temporal 
Domains in Logic Design: The False Path Problem and Its Implications, Kluwer 
Academic Publishers, Norwell, MA, 1991  

– K. J. Singh, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli, “Timing 
optimization of combinational logic”, Proc. Int. Conf. on Computer-Aided Design, 
pp. 282-285,1988. 

– H. J. Touati, H. Savoj, R. K. Brayton, “Delay Optimization of Combinational Logic 
Circuits By Clustering and Partial Collapsing,” Proc. Int. Conf. on Computer-Aided 
Design, pp. 188-191, 1991 

– K. J. Singh, “Performance optimization of digital circuits”, Ph.D. thesis, U. C. 
Berkeley, 1991. 
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Why? 
• Virtually all digital circuits encountered in practice 

are sequential 
• Techniques that we have learnt thus far only 

optimize the combinational logic 
– How do we go beyond the clock boundary? 
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Functional Specification of Sequential 
Circuits 

• For combinational circuits, we used 
– Truth table 
– SOP / POS 
– Boolean network 
– … 

• For sequential circuits 
– Finite State Machines (FSMs) 

• Mealy vs. Moore 
• Completely vs. Incompletely Specified 

– Finite Automata 
• Abstraction of computing systems 
• Similar to FSMs, except that they just accept input 

sequences 
• Deterministic vs. Non-deterministic 
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Finite State Machines (FSMs) 
• Formally defined as a 5-

tuple (I,O,S,, λ) 
– I: Set of input labels 
– O: Set of output labels 
– S: Set of states 
– : Transition relation 

• Determines next state 
given input and present 
state 

• Mapping: I Х S → S 
–  λ: Output relation 

• Determines output given 
input and present state 

• Mapping: I Х S → O 
(Mealy machine), S → O 
(Moore machine) 
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Delay element D: 
• Clocked: synchronous  
• Unclocked: asynchronous 

Can also specify an 
initial state s0 ∈ S 
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Representing FSMs 

• State Transition 
Graph (STG) 
– Directed graph 

(vertices = states, 
edges = state 
transitions) 

• State Transition 
Table 
– Tabular 

representation of 
next-state and output 
functions 
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Examples of 
incompletely specified 
FSMs 

Completely vs. Incompletely Specified 
FSMs 

• Completely specified FSMs 
–   must specify next state for 

all possible input and 
present state combinations 

–  λ must specify output for 
all possible input and 
present state combinations 

• Incompletely specified 
FSMs 
– Under some conditions, 

next-state or output values 
may be don’t cares 
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Example: Traffic Light Controller 
• Specification: A busy highway is intersected by a 

little used farm road.  Detectors sense the presence 
of cars waiting on the farm road.  With no car on 
farm road, the lights remains green in the highway 
direction.  If vehicles are present on the farm road, 
highway lights go from Green to Yellow to Red, 
allowing the farm road lights to become green.  
These stay green only as long as a farm road car is 
detected but never longer than a set interval. When 
these conditions are met, the farm road lights 
transition from Green to Yellow to Red, allowing the 
highway lights to return to green.  Even if farm road 
vehicles are waiting, the highway gets at least a set 
interval as green. Assume you have an interval timer 
that generates a short time pulse (TS) and a long 
time pulse (TL) in response to a set (ST) signal.  TS is 
to be used for timing yellow lights and TL for green 
lights. 

29 

S0: HG,FR 
 
S1: HY,FR 
 
S2: FG,HR 
 
S3: FY,HR 

Reset
TL + C

S0
TL•C/ST

TS
S1 S3

S2

TS/ST

TS/ST
TL + C/ST

TS

TL • C

Highway

Highway

Farmroad

Farmroad

HL

HL

FL

FL

C

C

Input Signal 
Reset 
C 
TS 
TL 
 
Output Signal 
HG, HY, HR 
FG, FY, FR 
ST 

Description 
place FSM in initial state 
detect vehicle on farmroad 
short time interval expired 
long time interval expired 
 
Description 
assert green/yellow/red highway lights 
assert green/yellow/red farmroad lights 
start timing a short or long interval 



ECE 595Z: Digital Systems Design Automation, Spring 2012 

FSM Synthesis 

• Given FSM 
specification, 
synthesize optimized 
implementation (gates 
+ FFs) 
– State minimization 
– State encoding 
– Derive next-state, 

output functions & 
apply combinational 
logic minimization 
techniques 
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