
© 2012 Anand Raghunathan ECE 595Z: Digital Systems Design Automation, Spring 2012

ECE 595Z
Digital VLSI Design Automation

Module 7 (Lectures 24-26): Sequential Logic
Optimization
Lecture 24

Anand Raghunathan
MSEE 318

raghunathan@purdue.edu
1

ECE 595Z: Digital Systems Design Automation, Spring 2012

Timing Optimization in Logic Synthesis

• Circuit re-structuring
– Get a good global structure for the

circuit
– Possible to do this during technology-

independent optimization or after
technology mapping

• E.g., Balanced tree vs. chain

• Technology mapping for delay
– We have already seen how tree

mapping works
– Delay budgeting across trees and

design hierarchy
• Fanout optimization (implementation

of buffer trees)
• Circuit sizing

2

Function trees
Buffer trees

ECE 595Z: Digital Systems Design Automation, Spring 2012

Circuit Re-structuring for Delay

• Techniques used for circuit re-structuring can be
viewed as generalizations of fast adder
architectures
– Carry lookahead → Collapsing and re-structuring /

height reduction
– Carry select → Generalized select transform
– Carry bypass → Generalized bypass transform

3

ECE 595Z: Digital Systems Design Automation, Spring 2012

Ripple Carry → Carry Lookahead Adder

• Recall how you designed a carry lookahead
adder?

4

c0

a0
b0

a1
b1

s0

s1

c2

P0 = a0⊕b0
G0 = a0b0

G1= a1b1
P1= a1⊕b1

c1 = G0 + c0P0
c2 = G1 + G0P1 + c0P0P1
c3 = G2 + G1P2 + G0P1P2
 + c0P0P1P2
…

Equations for carry directly in
terms of Propagate and
Generate bits

2-bit Ripple carry adder

ECE 595Z: Digital Systems Design Automation, Spring 2012

Ripple Carry → Carry Lookahead Adder

• What are we really doing here?
– Collapsing the critical path and re-

structuring it!

5

c0

a0
b0

a1
b1

s0

s1

c2

a0
b0

a1
b1

a1
b1

a0
b0

c2

G1

G0

P1

P0

c0

ECE 595Z: Digital Systems Design Automation, Spring 2012

Re-structuring for Delay: Height
Reduction

• The same concept can be applied to
arbitrary Boolean networks!

6

n
l m

i j
h

k
3

6

5 5

1 4
1

0 0 0 0 2 0 0
a b c d e f g

Critical
region

i
1

0 0
a b

m

j
h

k
3
4

1

0 0 2 0 0
c d e f g

 n’

Duplicated
logic

1 2 0 0

5 Collapsed
Critical region

Delay = 6

ECE 595Z: Digital Systems Design Automation, Spring 2012

Re-structuring for Delay: Height
Reduction

• Key idea: Collapsing a critical region and re-
structuring based on its input/output constraints

7

i
1

0 0
a b

m

j
h

k
3
4

1

0 0 2 0 0
c d e f g

 n’

Duplicated
logic

1 2 0 0

5 Collapsed
Critical region

i
1

0 0
a b

m

j

h

k
3

4
1

0 0 2 0 0
c d e f g

1
2

0

3
5

n’

2

1

0

4 New delay = 5

ECE 595Z: Digital Systems Design Automation, Spring 2012

Collapsing and re-structuring methodology

• Questions
– Which regions to re-structure?
– How to re-synthesize?

8

while(circuit timing improves) {
 select logic region to transform;
 collapse selected region;
 re-synthesize for better timing;
}

K. J. Singh, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli, “Timing optimization of combinational
logic”, Proc. Int. Conf. on Computer-Aided Design, pp. 282-285,1988.
H. J. Touati, H. Savoj, R. K. Brayton, “Delay Optimization of Combinational Logic Circuits By Clustering
and Partial Collapsing,” Proc. Int. Conf. on Computer-Aided Design, pp. 188-191, 1991

ECE 595Z: Digital Systems Design Automation, Spring 2012

Identifying Regions to Re-structure
• Start by identifying the ε-

critical network
• Key idea: Cut-set (or

separator-set) of a graph
– Set of vertices which, if

removed, partition the graph
into disjoint sub-graphs

• Find a minimum-cost cut-set
of the ε-critical network and
collapse nodes in the cut-set
– Cost computed based on

• Potential for delay
improvement

• Estimate of logic duplication

• Min-cut / Max-flow algorithm
can be used to identify
minimum cost cut-set

9

Circuit
ε-critical
network

ECE 595Z: Digital Systems Design Automation, Spring 2012

Identifying Regions to Re-structure
• How can we tell whether

there is potential for delay
optimization at a node?
– Look at the delay profile of

the candidate region that is to
be collapsed

• Arrival time at input vs. delay
through from the input to the
region output

10

h

i j k

l

m

n

h
i j k l

m

n

D(h,n)

Arrival times at
region inputs

D(in, out)

Profile 1

Arrival times at
region inputs

D(in, out)

Profile 2

Question: Which of the above profiles offers
higher potential for delay optimization?

region
to be
collapsed

AT(h)

ECE 595Z: Digital Systems Design Automation, Spring 2012

Timing-driven Re-structuring
• Collapse the nodes in the

cut-set with their
transitive fanins (up to
some logic depth)

• Re-synthesize collapsed
region
– Factoring
– Decomposition

• Key idea: Later arriving
inputs are used closer to
the outputs, and hence
experience lower delay
through the region

11

f

bc+
bf

a

b c
f

ac+
af

b

f c
a

abc+
abf

a b c

Example of timing-driven
factoring

ECE 595Z: Digital Systems Design Automation, Spring 2012

Timing-driven Re-structuring
• Timing-driven de-composition

– Efficient (greedy) algorithm to do this for AND, OR trees

12

timing_driven_decomp(f) {
 while(|inputs(f)| > 2) {
 select two earliest arriving inputs li,lj
 create a gate g with inputs li,lj
 substitute g into f
 compute delay at g
 }
}

abcd

a b c d
0

0 1 2

Example

Note: This algorithm is provably optimal!

ECE 595Z: Digital Systems Design Automation, Spring 2012

Circuit Re-structuring for Delay

• Techniques used for circuit re-structuring can be
viewed as generalizations of fast adder
architectures
– Carry lookahead → Collapsing and re-structuring / height

reduction
– Carry bypass → Generalized bypass transform
– Carry select → Generalized select transform

13

ECE 595Z: Digital Systems Design Automation, Spring 2012

Ripple Carry → Carry Bypass Adder

• How can we generalize this?

14

c_in

a0
b0

a1
b1

s0

s1

c_out

mux

Length 5
Length 1

1
0

ECE 595Z: Digital Systems Design Automation, Spring 2012

Generalized Bypass Transform (GBX)

• Key Idea: Make the longest path false
– Through the introduction of a “bypass” path

15

fm=f fm+1 fn=g …

fm=f fm+1 fn=g …

Patrick C. McGeer, Robert K. Brayton, Alberto L. Sangiovanni-Vincentelli, Sartaj Sahni, “Performance Enhancement
through the Generalized Bypass Transform,” Int. Conf. on Computer-Aided Design, 1991, pp. 184-187.

f
g

∂
∂

0
1

s-a-0 redundant

Note: Assumes
path from f to g is
non-inverting

ECE 595Z: Digital Systems Design Automation, Spring 2012

Circuit Re-structuring for Delay

• Techniques used for circuit re-structuring can be
viewed as generalizations of fast adder
architectures
– Carry lookahead → Collapsing and re-structuring / height

reduction
– Carry bypass → Generalized bypass transform
– Carry select → Generalized select transform

16

ECE 595Z: Digital Systems Design Automation, Spring 2012

Carry Select Adder

• Compute output assuming carry = 0 and carry = 1,
and select correct value once carry is available
– Benefit: Carry-in sees only MUX delay

17

0
1

0

1

Cin

A[7:4]

A[7:4]

B[7:4]

B[7:4]

4-bit ripple
carry adder

4-bit ripple
carry adder

0
1

0
1

0

1

Cin

A[3:0]

A[3:0]

B[3:0]

B[3:0]

4-bit ripple
carry adder

4-bit ripple
carry adder

0
1

S[3:0]

Cout

How do we generalize this?

ECE 595Z: Digital Systems Design Automation, Spring 2012

Generalized Select Transform (GST)
• Key idea: Co-factor w.r.t. late arriving signal

18

C.L. Berman, D.J. Hathaway, A.S. LaPaugh, L.H. Trevillyan, “Efficient techniques for timing correction,”
IEEE International Symposium on Circuits and Systems, 1990, pp. 415-419 .

c d e f g

a

b

out

c d e f g

b

c d e f g

b

0

1

out
0

1

a

ECE 595Z: Digital Systems Design Automation, Spring 2012

GBX vs. GST

19

c d e f

g
b

c d e f

g
b

a=0

a=1

… 0
1

a c g

b

GBX

a

h

… 0
1

a

a

b

c
g

h

GBX a
g

∂
∂

c d e f

g b

c d e f
g b

a=0

a=1

out 0
1

a

GST
0

1

ECE 595Z: Digital Systems Design Automation, Spring 2012

GBX vs. GST
• Select transform appears to be more area efficient, but..

– Boolean difference often more efficiently formed in practice

• Both transforms have similar impact on delay
• Can reuse parts of the duplicated logic for multiple fanouts in

GST
– Need one MUX per fanout

20

c d e f g b

c d e f g b

a=0

a=1

out1 0

1

a

GST out2 0

1

a

ECE 595Z: Digital Systems Design Automation, Spring 2012

Summary: Timing Optimization

• Variety of methods for delay
optimization

• No single technique dominates
• When applied to ripple-carry adder get

– Carry-lookahead adder (height reduction)
– Carry-bypass adder (Generalized Bypass

Transform)
– Carry-select adder (Generalized Select

Transform)

21

ECE 595Z: Digital Systems Design Automation, Spring 2012

Suggested Reading

• De Micheli, Chapter 8.6
• Selected publications (available on blackboard)

– H. Chen, and N. Du, “Path sensitization in critical path problem,” IEEE
Transactions on Computer-Aided Design, vol. 12, no. 2, pp. 196 – 207, Feb. 1993.

– S. Devadas, K. Keutzer, and S. Malik, “Delay Computation in Combinational Logic
Circuits: Theory and Algorithms”, Proc. Int. Conf. on Computer-Aided Design, pp.
176-179, 1991.

– Patrick C. McGeer, Alexander Saldanha, Paul R. Stephan, Robert K. Brayton,
Alberto L. Sangiovanni-Vincentelli: Timing Analysis and Delay-Fault Test
Generation using Path-Recursive Functions. ICCAD 1991

– Patrick C. McGeer , Robert K. Brayton, Integrating Functional and Temporal
Domains in Logic Design: The False Path Problem and Its Implications, Kluwer
Academic Publishers, Norwell, MA, 1991

– K. J. Singh, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli, “Timing
optimization of combinational logic”, Proc. Int. Conf. on Computer-Aided Design,
pp. 282-285,1988.

– H. J. Touati, H. Savoj, R. K. Brayton, “Delay Optimization of Combinational Logic
Circuits By Clustering and Partial Collapsing,” Proc. Int. Conf. on Computer-Aided
Design, pp. 188-191, 1991

– K. J. Singh, “Performance optimization of digital circuits”, Ph.D. thesis, U. C.
Berkeley, 1991.

22

ECE 595Z: Digital Systems Design Automation, Spring 2012

Why?
• Virtually all digital circuits encountered in practice

are sequential
• Techniques that we have learnt thus far only

optimize the combinational logic
– How do we go beyond the clock boundary?

24

Combinational
Logic

Inputs

Clock Outputs

ECE 595Z: Digital Systems Design Automation, Spring 2012

Functional Specification of Sequential
Circuits

• For combinational circuits, we used
– Truth table
– SOP / POS
– Boolean network
– …

• For sequential circuits
– Finite State Machines (FSMs)

• Mealy vs. Moore
• Completely vs. Incompletely Specified

– Finite Automata
• Abstraction of computing systems
• Similar to FSMs, except that they just accept input

sequences
• Deterministic vs. Non-deterministic

25

ECE 595Z: Digital Systems Design Automation, Spring 2012

Finite State Machines (FSMs)
• Formally defined as a 5-

tuple (I,O,S,, λ)
– I: Set of input labels
– O: Set of output labels
– S: Set of states
– : Transition relation

• Determines next state
given input and present
state

• Mapping: I Х S → S
– λ: Output relation

• Determines output given
input and present state

• Mapping: I Х S → O
(Mealy machine), S → O
(Moore machine)

26

x ∈ I y ∈ O
λ

δ s ∈ S s+ ∈ S

D

Delay element D:
• Clocked: synchronous
• Unclocked: asynchronous

Can also specify an
initial state s0 ∈ S

ECE 595Z: Digital Systems Design Automation, Spring 2012

Representing FSMs

• State Transition
Graph (STG)
– Directed graph

(vertices = states,
edges = state
transitions)

• State Transition
Table
– Tabular

representation of
next-state and output
functions

27

ECE 595Z: Digital Systems Design Automation, Spring 2012

Examples of
incompletely specified
FSMs

Completely vs. Incompletely Specified
FSMs

• Completely specified FSMs
–  must specify next state for

all possible input and
present state combinations

– λ must specify output for
all possible input and
present state combinations

• Incompletely specified
FSMs
– Under some conditions,

next-state or output values
may be don’t cares

28

http://people.csail.mit.edu/devadas/6.373/lectures/l08/P016.html�

ECE 595Z: Digital Systems Design Automation, Spring 2012

Example: Traffic Light Controller
• Specification: A busy highway is intersected by a

little used farm road. Detectors sense the presence
of cars waiting on the farm road. With no car on
farm road, the lights remains green in the highway
direction. If vehicles are present on the farm road,
highway lights go from Green to Yellow to Red,
allowing the farm road lights to become green.
These stay green only as long as a farm road car is
detected but never longer than a set interval. When
these conditions are met, the farm road lights
transition from Green to Yellow to Red, allowing the
highway lights to return to green. Even if farm road
vehicles are waiting, the highway gets at least a set
interval as green. Assume you have an interval timer
that generates a short time pulse (TS) and a long
time pulse (TL) in response to a set (ST) signal. TS is
to be used for timing yellow lights and TL for green
lights.

29

S0: HG,FR

S1: HY,FR

S2: FG,HR

S3: FY,HR

Reset
TL + C

S0
TL•C/ST

TS
S1 S3

S2

TS/ST

TS/ST
TL + C/ST

TS

TL • C

Highway

Highway

Farmroad

Farmroad

HL

HL

FL

FL

C

C

Input Signal
Reset
C
TS
TL

Output Signal
HG, HY, HR
FG, FY, FR
ST

Description
place FSM in initial state
detect vehicle on farmroad
short time interval expired
long time interval expired

Description
assert green/yellow/red highway lights
assert green/yellow/red farmroad lights
start timing a short or long interval

ECE 595Z: Digital Systems Design Automation, Spring 2012

FSM Synthesis

• Given FSM
specification,
synthesize optimized
implementation (gates
+ FFs)
– State minimization
– State encoding
– Derive next-state,

output functions &
apply combinational
logic minimization
techniques

30

S0 S1

1/

1

----/1

(--00, 11-0)/0

(1010, 0110)/1

FF

in1
in2

in3
in4

out 1

State Minimization

State Encoding

Combinational
Logic Synthesis

	ECE 595Z�Digital VLSI Design Automation��Module 7 (Lectures 24-26): Sequential Logic Optimization�Lecture 24
	Timing Optimization in Logic Synthesis
	Circuit Re-structuring for Delay
	Ripple Carry → Carry Lookahead Adder
	Ripple Carry → Carry Lookahead Adder
	Re-structuring for Delay: Height Reduction
	Re-structuring for Delay: Height Reduction
	Collapsing and re-structuring methodology
	Identifying Regions to Re-structure
	Identifying Regions to Re-structure
	Timing-driven Re-structuring
	Timing-driven Re-structuring
	Circuit Re-structuring for Delay
	Ripple Carry → Carry Bypass Adder
	Generalized Bypass Transform (GBX)
	Circuit Re-structuring for Delay
	Carry Select Adder
	Generalized Select Transform (GST)
	GBX vs. GST
	GBX vs. GST
	Summary: Timing Optimization
	Suggested Reading
	Why?
	Functional Specification of Sequential Circuits
	Finite State Machines (FSMs)
	Representing FSMs
	Completely vs. Incompletely Specified FSMs
	Example: Traffic Light Controller
	FSM Synthesis

