[Illinois] BioNanotechnology Seminar Series Fall 2012: Understanding and Controlling Fibrotic Myocardium

By Guy Genin

Mechanical Engineering & Materials Science, University of Washington in St. Louis, St. Louis, MO

Published on

Abstract

Hypertension kills 1 in every 5000 Americans each year and affects the majority of those over the age of 55. Following prolonged hypertension, cardiac fibroblasts within the heart convert to myofibroblasts, a larger, contractile phenotype that produces fibrous connective tissue and thereby stiffens heart muscle. In addition to this mechanical effect, myofibroblasts disrupt normal patterns of electrical excitation of cardiomyoctyes, potentially leading to cardiac failure through any of several pathways. Therapies that control myofibroblasts would evidently be of value, but little is known about their mechanical and electrophysiological interactions with cardiomyocytes. We therefore developed and analyzed a model tissue system that allows us to dissect how myofibroblasts, cardiomyocytes, and ECM interface to alter the functioning of myocardium. This talk will summarize results suggesting pathways by which myofibroblasts alter the contractile response of myocardium, and some initial thoughts on treatments to improve this response by regulating cytoskeletal elements of myofibroblasts.

Bio

Professor Genin was a post-doctoral researcher at Cambridge University and Brown University before he joined Washington University in St. Louis in 1999.

Professor Genin's research interests include cellular, mineral, and tissue mechanics at the tendon-to-bone interface, or "insertion." He also studies the mechanical response of the brain to skull acceleration, and aspects of cellular membrane mechanics relevant to HIV replication.

Sponsored by

Cite this work

Researchers should cite this work as follows:

  • Guy Genin (2012), "[Illinois] BioNanotechnology Seminar Series Fall 2012: Understanding and Controlling Fibrotic Myocardium," https://nanohub.org/resources/15997.

    BibTex | EndNote

Time

Location

MNTL 1000, University of Illinois Urbana Champaign, Urbana, IL

Submitter

William Edward Nixon, Obaid Sarvana, George Michael Daley, NanoBio Node

University of Illinois at Urbana-Champaign

Tags