[Illinois] ECE 416 Bioselective Layers

By Brian Cunningham

Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL

Published on


           In this lecture, the four different immobilization methods of capture molecules are discussed: Adsorption, Covalent Bonding, Entrapment, and Membrane Confinement. These methods provide the different ways molecules can become attached to the sensor and the chemical functional groups that are involved are discussed next. The lecture goes into detail over glutaraldehyde as a good bifunctional linker. The three ligands to biosensors are discussed. Cuvette is a static liquid container into which particles may diffuse. Flow Cells are when molecules are sent through a channel to ease the capture process. Arrays are when there is an array of spots with a different antibody in each spot. The part of biology that concerns the biosensors is the protein as it can bind with every molecule possible.


Dr. Brian Cunningham received a Ph.D. in Electrical and Computer Engineering from the University of Illinois at Urbana-Champaign in 1990.

Dr. Cunningham is interested in optical biosensors, photonic crystals, nanofabrication, finite difference time domain analysis, and sensor design and instrumentation.

His research group is focused on the application of sub-wavelength optical phenomena and fabrication methods to the development of novel devices and instrumentation for the life sciences. The group is highly interdisciplinary, with expertise in the areas of microfabrication, nanotechnology, computer simulation, instrumentation, molecular biology, and cell biology. In particular, they are working on biosensors based upon photonic crystal concepts that can either be built from low-cost flexible plastic materials, or integrated with semiconductor-based active devices, such as light sources and photodetectors, for high performance integrated detection systems.

Using a combination of micrometer-scale and nanometer-scale fabrication tools, the group is devising novel methods and materials for producing electro-optic devices with nanometer-scale features that can be scaled for low-cost manufacturing. Many of their techniques are geared for compatibility with flexible plastic materials, leading to applications such as low cost disposable sensors, wearable sensors, flexible electronics, and flexible displays. Because their structures manipulate light at a scale that is smaller than an optical wavelength, they rely on computer simulation tools such as Rigorous Coupled Wave Analysis (RCWA) and Finite Difference Time Doman (FDTD) to model, design, and understand optical phenomena within photonic crystals and related devices.

In addition to fabricating devices, the group is also focused on the design, prototyping, and testing of biosensor instrumentation for high sensitivity, portability, and resolution. Advanced instruments enable high resolution imaging of biochemical and cellular interactions with the ability to monitor images of biochemical interactions as a function of time. Using the sensors and instrumentation, they are exploring new applications for optical biosensor technology including protein microarrays, biosensor/mass spectrometry systems, and microfluidics-based assays using nanoliter quantities of reagents. The methods and systems developed in the laboratory are applied in the fields of life science research, drug discovery, diagnostic testing, and environmental monitoring.

Cite this work

Researchers should cite this work as follows:

  • Brian Cunningham (2013), "[Illinois] ECE 416 Bioselective Layers," http://nanohub.org/resources/16709.

    BibTex | EndNote



University of Illinois at Urbana-Champaign, Urbana, IL


NanoBio Node, Obaid Sarvana, George Daley

University of Illinois at Urbana-Champaign