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• Recap from Monday 
• Perfectly Matched Layers 
• Finite Elements 
• Finite Element BPM 
• Reducing FEM Errors 
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Recap from Monday 

• Derivation of Beam Propagation Method 
• Nonlinear Schrodinger equation 
• Comparison of BPM Strategies 

– FFT 
– Uniform spatial grid 
– Finite element 
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Recap from Monday 
• Beam propagation amounts to solving: 

𝜕𝜕
𝜕𝜕

= 𝑈 + 𝑊 𝜙 

where: 

𝑈 =
𝑗

2𝛽
𝛻  ⊥2  

𝑊 =
𝑗𝑘  ⊥2

2𝛽
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Perfectly Matched Layers 
• In order to prevent lateral reflections (e.g., from PEC 

boundaries), can introduce perfectly matched layers 
(PML) 

• Several formulations (including split-field and uniaxial), 
but here we’ll follow stretched coordinate PML 

• Effected by the transformation: 
𝛻 ⟶ 𝐴 ∙ 𝛻 

𝐴 =
1 − 𝑗𝛽 0 0

0 1 − 𝑗𝛽 0
0 0 1

 

𝛽 = −
3𝜆𝜌2

4𝜋𝜋𝑑3
ln𝑅 
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Perfectly Matched Layers 

• Residual reflection 
scales as a power 
law with PML 
thickness 

• Cubic absorption 
increase with 
position offers the 
best performance 
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A.F. Oskooi et al., Comput. Phys. 
Commun. (2009) 



Finite Elements 

• Shapes: 1D, 2D, and 3D 
 
 
 
• Shape functions: 

1D: 𝑢 𝑥 = 𝛼 + 𝛽𝛽 + 𝛾𝑥2 + ⋯ 
2D/3D: 𝑢 𝑥 = ∑ 𝛼𝑘𝑥𝑘 + 𝛽𝑘𝑦𝑘 + 𝛾𝑘𝑧𝑘𝑑

𝑘=0  
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Finite Elements 
• Lagrange functions: 

𝜆𝑜 𝑥 =
𝜉1 − 𝑥
𝜉1 − 𝜉𝑜

 

𝜆1 𝑥 =
𝑥 − 𝜉𝑜
𝜉1 − 𝜉𝑜

 

Basis functions 𝜑𝑗(𝑥) 
combine the Lagrange 
functions with compact 
support 
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M. Asadzadeh, Introduction to the Finite 
Element Method for Differential 
Equations (2010)  



Finite Element BPM 

• In general, can formulate FE problems as: 
𝐿𝐿 = 𝑏 

– L is the stiffness matrix, representing overlap 
between basis functions 

– b is the integral of given PDE with respect to basis 
– u is unknown 
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Finite Element BPM 

• Can define error function as: 
𝐸 = 𝐿𝐿 − 𝑏 

• In order to eliminate errors, set weighted residual 𝑤𝑖 in 
test space v to zero: 

�𝑤𝑖  (𝐿𝐿 − 𝑏)
 

𝑣
= 0 

• Galerkin’s method is a specific example of this: 

�𝜓(𝐿𝐿 − 𝑏)
 

𝑣
= 0 

where u(x) are the polynomials we saw earlier 
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Finite Element BPM 
• Can refine accuracy of BPM for wide-angle beam 

propagation with second derivative in z: 
𝑑𝜁
𝑑𝑑

= −2𝑗𝛽𝛽 − 𝛻  ⊥2 𝜙 − 𝑘  ⊥2 𝜙 
𝑑𝜙
𝑑𝑑

= 𝜁 

• Can then choose a Padé approximant based on initial 
value of ζ.  If ζ(0)=0, then: 

𝜁 = 𝑗𝑗 1 +
𝛻  ⊥2 + 𝑘  ⊥2

𝛽2
− 1 𝜙 
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Finite Element BPM 

• Applying Galerkin method to second-order 
BPM equations yields: 
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Reducing FEM Errors 

• Error depends on match between true 
solution and basis functions 

• To reduce error, can try the following: 
– H-adaptivity: decrease the mesh size 
– P-adaptivity: increase the degree of the fitted 

polynomials 
– HP-adaptivity: combine all of the above 
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Reducing FEM Errors 

• Strategy for reducing errors: 
– Create an initial meshing 
– Compute solution on that meshing 
– Compute the error associated with it 
– If above our tolerance, refine the mesh spacing 

and start again 
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Next Class 

• Is on Friday, Feb. 15 
• Will continue with beam propagation 

method 
• Recommended reading: Obayya, 

Sections 2.7-2.8 
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