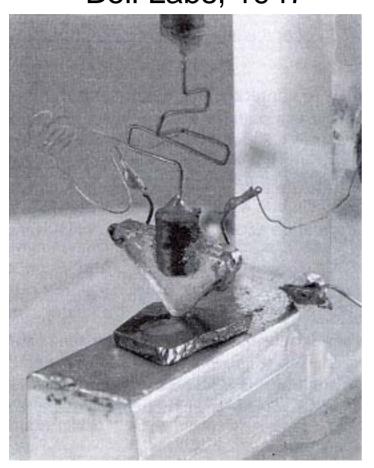
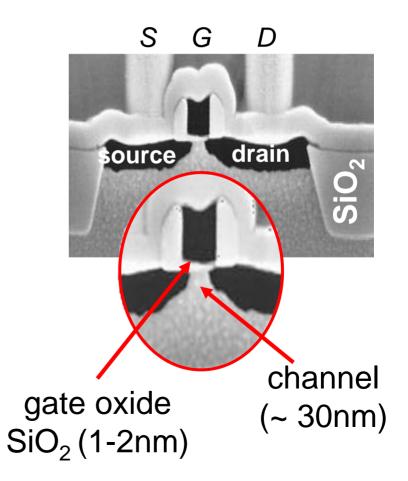
EE-612:

Nanoscale Transistors


Fall 2006


Professor Mark Lundstrom
Electrical and Computer Engineering
Purdue University, West Lafayette, IN USA
765-494-3515
lundstro@purdue.edu

evolution of silicon technology

Bell Labs, 1947

course outcomes

After taking this course, students should:

- » Understand nanoscale MOSFET device physics
- » Appreciate how device performance affects circuits and systems
- » Appreciate device scaling challenges
- » Be acquainted with new material and device approaches

course prerequisites

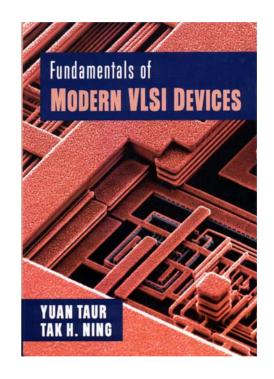
» Introductory level understanding of semiconductor physics and devices as well as basic electronic circuits.

(EE255 and EE305/606 at Purdue)

(basic MOS physics, devices, and CMOS circuits will be briefly reviewed)

course outline

Part 1: MOSFET fundamentals
5 weeks including 1 exam


Part 2: Short channel MOSFETs and CMOS Circuits
5 weeks including 1 exam

Part 3: Beyond the bulk silicon MOSFET5 weeks

course text

Fundamentals of Modern VLSI Devices Yuan Taur and Tak Ning

supplemented with class notes

Cambridge Univ. Press, 1998 www.cup.cam.ac.uk/

course grading

Exam 1: 25%

-MOSFET fundamentals

Exam 2: 25%

-short channel MOSFETs, circuits and systems

Homework: 25%

Final: 25%

some suggestions

- 1) Do the reading *before* class (and after)
- Monitor IEEE Trans. Electron Devices and Electron Device Letters (and ask questions)
- 3) Attend relevant departmental / Discovery Park seminars
- 4) Monitor the course homepage for announcements, handouts, etc.(http://cobweb.ecn.purdue.edu/~ee612)
- 5) Use www.nanoHUB.org as a course supplement

EE-612

for additional information, refer to the course syllabus (available on the class homepage)

Good luck in EE-612!

feel free to contact me at lundstro@purdue.edu