ECE 595, Section 10 Numerical Simulations Lecture 24: Electronic Bandstructure Simulation Tools

Prof. Peter Bermel March 6, 2013

Recap from Monday

- Electronic bandstructure overview
- Calculational methods:
 - Nearly-free electron model
 - Wigner-Seitz method
 - Tight-binding
 - Pseudopotentials

Outline

- Electronic bandstructure lab
 - Basic principles
 - Input Interface
 - Exemplary Outputs
- Density functional theory (DFT)
- DFT in Quantum ESPRESSO

Bandstructure Lab

"First Time User Guide" by Abhijeet Paul and Gerhard Klimeck

Bandstructure Lab

Top of the barriek

ballistic transport

"First Time User Guide" by Abhijeet Paul and Gerhard Klimeck

Bandstructure Lab: Input

- Step 1A: Choose basic geometry:
 - Nanowire (cylindrical 1D) also choose device cross-section
 - Ultra-thin body (2D-periodic) also choose body thickness
 - Bulk silicon (3D periodic)
- Step 1B: Choose material: Si, Ge, GaAs, or InAs

Bandstructure Lab: Input

- Step 2: Choose Device Physics:
 - Tight bonding model
 - Spin-orbit coupling
 - Dangling bond energy
 - Strain
- Step 3: Choose k-space of bandstructure
- Step 4: Choose k-interpolation, number of bands, and simulation venue

Bandstructure Lab: Output

2D ultra-thin body (E_g =1.12 eV) Height z = 2.1 nm

Electronic Bandstructure Lab:

1D NW of InAs (E_g =0.17 eV) Circular cross-section, r = 2.1 nm

Bandstructure Lab: Output

3D periodic Ge Diamond lattice (E_g =0.67 eV)

Density Functional Theory

 Consider the N-electron Hamiltonian including electron-electron interactions:

$$\sum_{i} \left[-\frac{\hbar^2}{2m} \boldsymbol{\nabla}_{i}^{2} + V(\boldsymbol{r}_{i}) + \sum_{j} U(\boldsymbol{r}_{i}, \boldsymbol{r}_{j}) \right] \Psi = E \Psi$$

- Can try to solve using:
 - Hartree-Fock (treating electron-electron interactions as mean field
 - Post-Hartree-Fock (e.g., configuration interaction, coupled cluster, Moller-Plesset)
 - Density functional theory

Density Functional Theory

Write all functions in terms of particle density:

$$n(r) = N \int d^3r_2 \int d^3r_3 |\Psi(r, r_2, \dots, r_N)|^2$$

Now system energy becomes:

$$E[n] = T[n] + U[n] + \int d^3r V(r)n(r)$$

• Where T[n] and U[n] are universal functionals, and V[n] is a non-universal functional

Density Functional Theory

- Electron correlations mean greatest difficulty is in evaluating V[n]. Strategies include:
 - Local density approximation:

$$E_{XC}[n] = \int d^3r \, n(r) \, \epsilon_{XC}(n)$$

- Localized spin density approximation
- Generalized gradient approximation:

$$E_{XC}[n_{\uparrow},n_{\downarrow}] = \int d^3r \, n(r) \, \epsilon_{XC}(n_{\uparrow},n_{\downarrow},\nabla n_{\uparrow},\nabla n_{\downarrow})$$

Meta-generalized gradient approximation

Quantum ESPRESSO: Input

- Step 1: Geometry
 - Atomic basis (e.g., 2 silicon atoms)
 - Lattice (e.g., diamond) and lattice constant a
- Step 2: Energy expression:
 - Approximation for E_{xc}
 - Bandstructure k-values
- Step 3: Phonon bands: yes or no
- Step 4: Bandstructure/DOS
 - Choose path for bandstructure
 - Choose energy range for density of states

Quantum ESPRESSO: Output

Quantum ESPRESSO: Output

- Displays bandgap of 0.6 eV, below true value
- GGA + quasi-Newton relaxation improve accuracy

Next Class

- Is on Friday, March 8
- Will conclude discussion of electronic bandstructure simulations