[Illinois] ECE 416 Lecture 36: Raman Spectroscopy

By Guillermo Monroy1, Brian Cunningham1

1. University of Illinois at Urbana-Champaign

Published on


Learn the underlying engineering principles used to detect small molecules, DNA, proteins, and cells in the context of applications in diagnostic testing, pharmaceutical research, and environmental monitoring. Biosensor approaches including electrochemistry, fluorescence, acoustics, and optics will be taught. The course also teaches aspects of selective surface chemistry, including methods for biomolecule attachment to transducer surfaces. Students will learn how biosensor performance is characterized and will analyze case studies of commercial biosensor systems. Blood glucose detection, fluorescent DNA microarrays, label-free biochips, and bead-based assay methods will be covered. The course teaches classical methods for biodetection, but also extends into current areas of research and novel sensors involving nanotechnology, photonic crystals, and new tools used in the fields of genomics and proteomics.


My research group is focused on the application of sub-wavelength optical phenomena and fabrication methods to the development of novel devices and instrumentation for the life sciences. The group is highly interdisciplinary, with expertise in the areas of microfabrication, nanotechnology, computer simulation, instrumentation, molecular biology, and cell biology. In particular, we are working on biosensors based upon photonic crystal concepts that can either be built from low-cost flexible plastic materials, or integrated with semiconductor-based active devices, such as light sources and photodetectors, for high performance integrated detection systems.

Using a combination of micrometer-scale and nanometer-scale fabrication tools, we are devising novel methods and materials for producing electro-optic devices with nanometer-scale features that can be scaled for low-cost manufacturing. Many of our techniques are geared for compatibility with flexible plastic materials, leading to applications such as low cost disposable sensors, wearable sensors, flexible electronics, and flexible displays. Because our structures manipulate light at a scale that is smaller than an optical wavelength, we rely on computer simulation tools such as Rigorous Coupled Wave Analysis (RCWA) and Finite Difference Time Doman (FDTD) to model, design, and understand optical phenomena within photonic crystals and related devices.

In addition to fabricating devices, our group is also focused on the design, prototyping, and testing of biosensor instrumentation for high sensitivity, portability, and resolution. Advanced instruments enable high resolution imaging of biochemical and cellular interactions with the ability to monitor images of biochemical interactions as a function of time. Using the sensors and instrumentation, we are exploring new applications for optical biosensor technology including protein microarrays, biosensor/mass spectrometry systems, and microfluidics-based assays using nanoliter quantities of reagents. The methods and systems developed in the laboratory are applied in the fields of life science research, drug discovery, diagnostic testing, and environmental monitoring. -From Professor Cunningham's Faculty Profile

Cite this work

Researchers should cite this work as follows:

  • Guillermo Monroy, Brian Cunningham (2013), "[Illinois] ECE 416 Lecture 36: Raman Spectroscopy," http://nanohub.org/resources/17705.

    BibTex | EndNote



University of Illinois, Urbana-Champaign, IL


NanoBio Node

University of Illinois at Urbana-Champaign