[Illinois] PHYS466 2013 Lecture 25: Optimization

By Lucas Wagner

University of Illinois at Urbana-Champaign

Published on

Abstract


Cite this work

Researchers should cite this work as follows:

  • Lucas Wagner (2013), "[Illinois] PHYS466 2013 Lecture 25: Optimization," http://nanohub.org/resources/18093.

    BibTex | EndNote

Time

Location

University of Illinois, Urbana-Champaign, IL

Submitter

NanoBio Node, George Michael Daley

University of Illinois at Urbana-Champaign

Tags

[Illinois] PHYS 466 Lecture 25: Optimization
  • Optimiation 1. Optimiation 0
    00:00/00:00
  • Optimiation 2. Optimiation 17.477879799666109
    00:00/00:00
  • Finding the nearest local minimum 3. Finding the nearest local mini… 156.32231404958677
    00:00/00:00
  • Local minimum finding algorithms 4. Local minimum finding algorith… 259.21487603305786
    00:00/00:00
  • Finding the nearest local minimum 5. Finding the nearest local mini… 285.74380165289256
    00:00/00:00
  • Local minimum finding algorithms 6. Local minimum finding algorith… 289.95867768595042
    00:00/00:00
  • Why not follow the steepest descent? 7. Why not follow the steepest de… 366.94214876033055
    00:00/00:00
  • Local minimum finding algorithms 8. Local minimum finding algorith… 565.53719008264466
    00:00/00:00
  • Why not follow the steepest descent? 9. Why not follow the steepest de… 610.53719008264454
    00:00/00:00
  • Which minimization algorithm to use? 10. Which minimization algorithm t… 651.694214876033
    00:00/00:00
  • Local optimization with noisy data 11. Local optimization with noisy … 712.43801652892569
    00:00/00:00
  • Global minimization 12. Global minimization 1181.2809917355371
    00:00/00:00
  • Simulated annealing 13. Simulated annealing 1401.6942148760331
    00:00/00:00
  • Simulated annealing 14. Simulated annealing 1490.8264462809918
    00:00/00:00
  • Example: traveling salesman 15. Example: traveling salesman 1617.8925619834711
    00:00/00:00
  • Simulated annealing: example 16. Simulated annealing: example 1685.5785123966944
    00:00/00:00
  • Other global minimization algorithms 17. Other global minimization algo… 1801.2396694214874
    00:00/00:00
  • Shake and optimize 18. Shake and optimize 1870.1652892561981
    00:00/00:00
  • Genetic algorithm 19. Genetic algorithm 1998.9669421487604
    00:00/00:00
  • Shake and optimize 20. Shake and optimize 2134.2148760330579
    00:00/00:00
  • Genetic algorithm 21. Genetic algorithm 2141.6528925619832
    00:00/00:00
  • Swar, algorithm 22. Swar, algorithm 2147.727272727273
    00:00/00:00
  • Real world application: UAV control 23. Real world application: UAV co… 2362.5619834710742
    00:00/00:00
  • On finding global minima 24. On finding global minima 2450.5785123966944
    00:00/00:00
  • Real world application: UAV control 25. Real world application: UAV co… 2468.9256198347107
    00:00/00:00
  • On finding global minima 26. On finding global minima 2482.4380165289258
    00:00/00:00