Support Options

Submit a Support Ticket


Nanoscale MOSFETS: Physics, Simulation and Design

By Zhibin Ren

Purdue University, West Lafayette, IN



Published on


This thesis discusses device physics, modeling and design issues of nanoscale transistors at the quantum level. The principle topics addressed in this report are 1) an implementation of appropriate physics and methodology in device modeling, 2)development of a new TCAD (technology computer aided design) tool for quantum level device simulation, 3) examination and assessment of new features of carrier transport in nano-scale transistors, and 4) exploration of device design issues near the ultimate scaling limit with the help of the developed tools. We concentrate on the technical issues by investigating a double-gate structure, which has been widely accepted as the ideal device structure for ultimate CMOS scaling. We focus on quantum effects and non-equilibrium, near-ballistic transport in extremely scaled transistors (in contrast to quasi-equilibrium, scattering-dominant transport in long channel devices), where a non-equilibrium Green's function formalism (NEGF) has been used to deal with the quantum transport problem.


Zhibin Ren received his PhD from Purdue University in October 2001.



Purdue University, West Lafayette, IN

Tags, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.