Support Options

Submit a Support Ticket


Process Lab : Defect-coupled diffusion

By Shuqing (Victor) Cao1, Yang Liu1, Peter Griffin1

1. Stanford University

Integrated Circuit Fabrication Process Simulation : Simulates dopant diffusion coupled with point defects

Launch Tool

This tool version is unpublished and cannot be run. If you would like to have this version staged, you can put a request through HUB Support.

Archive Version 1
Published on 26 Sep 2006
Latest version: 1.0. All versions

doi:10.4231/D3XW47V8Z cite this

This tool is closed source.



Published on


The diffusion process is one of the most important processes in VLSI fabrication. It is implemented in processes such as the drain and source doping, the quality of which is extremely important for the electrical properties and performance of today's integrated circuit technology. This simulation tool simulates the dopant diffusion process by solving a set of partial differential equations. The tool gives users the freedom to adjust critical parameters and conditions in the process, such as the initial doping profile, time, temperature, length, Kf, Kr, fi and so on. The unique feature of this module is that it provides users the possibility to choose between point-defect-coupled diffusion and a diffusion without defect coupling. It also gives users opportunities to choose between the concentration dependency, as well as the type of dopants among 5 commonly used dopant species.

A dopant concentration versus diffusion depth figure is plotted almost instantaneously after the users specify the necessary parameters and conditions. The entire diffusion process is simulated after one click on the web interface, while all the complicated details and PDE-solving procedures are hidden behind the scene. The interactive interface of the module and its simplicity of usage demonstrates the module's educational value in that it helps students and engineers build intuition into the diffusion process with minimum learning curve. Insightful comparison, such as one between diffusion with defect-coupling and one without, can be done easily. Moreover, the module can be used as a handy and efficient "diffusion calculator".

Tags, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.