EE-612: Lecture 17: Device Scaling

Mark Lundstrom

Electrical and Computer Engineering
Purdue University
West Lafayette, IN USA
Fall 2006

outline

- 1) Objective of scaling
- 2) Constant field scaling
- 3) Non-scaling factors
- 4) The ITRS
- 5) Scaling in practice

2D Poisson equation

original device

scaled device

- dimensions reduced by κ
- area reduced by κ^2
- number per chip increased by κ^2

benefits of device scaling

Intel 4004 (1971) 2,250 transistors ~1MHz $(L \sim 5-10 \text{ microns})$

Itanium 2 (2006) >1,700,000,000 transistors ~2GHz ($L \sim 0.065$ microns)

scaled I-V

'constant field scaling'

scaled short channel effects

questions

- 1) How do we scale? (e.g. L, t_{ox} , N_A , V_{DD} , etc.)
- 2) How does performance scale? (e.g. speed, power, etc.)
- 3) What does not scale?
- 4) How does it work in practice?

outline

- 1) Objective of scaling
- 2) Constant field scaling
- 3) Non-scaling factors
- 4) The ITRS
- 5) Scaling in practice

constant field scaling

Objective:

Maintain a constant electric field as dimensions are scaled down.

$$t_{OX}, L, W, x_j \rightarrow t_{OX}/\kappa, L/\kappa, W/\kappa, x_j/\kappa$$

$$N_A \rightarrow N_A \kappa$$

$$V_{DD} \rightarrow V_{DD} / \kappa$$

constant field scaling (ii)

quantity

scaled quantity

$$E ext{ (V/cm)}$$
 $E ext{ } v ext{ (cm/s)}$ $\mu E ext{ } v ext{ } (v)$

$$W_D = \sqrt{\frac{2\varepsilon_{Si}}{qN_A} (V_{bi} + V_{DD})} \text{ (cm)}$$

$$W_D / \kappa$$

$$C = \frac{\varepsilon A}{t} (F)$$

constant field scaling (iii)

quantity

scaled quantity

$$Q_i = C_{OX} \left(V_{GS} - V_T \right) \left(C/cm^2 \right)$$

$$Q_i$$

$$I_D = W Q_i \upsilon$$
 (A)

$$I_D/\kappa$$

$$R_{CH} = \frac{V_{DS}}{I_D} = \frac{L}{W \mu_{eff} Q_i} \quad (\Omega)$$

$$R_{CH}$$

$$V_T = V_{FB} + 2\psi_B + \sqrt{2q\varepsilon_{Si}N_A(2\psi_B)} / C_{OX} \quad (V)$$

 $> V_T / \sqrt{\kappa}$

need V_T/κ

impact on circuits / systems

quantity

scaled quantity

$$\tau = CV_{DD}/I_D$$
 (sec)

$$\tau/\kappa$$

$$P = V_{DD}I_D \quad (W)$$

$$P/\kappa^2$$

$$D = \frac{\text{no.}}{A_C} \text{ (cm}^{-2})$$

$$D \times \kappa^2$$

$$P/A$$
 (W/cm²)

$$P\tau = CV_{DD}^2$$

$$P\tau/\kappa^3$$

constant voltage scaling

Objective:

Maintain a constant power supply voltage as dimensions are scaled down.

$$V_{DD} \rightarrow V_{DD}$$

$$t_{OX}, L, W, W_D, x_j \rightarrow t_{OX}/\kappa, L/\kappa, W/\kappa, W_D/\kappa, x_j/\kappa$$

$$N_A \rightarrow N_A \kappa^2$$

power density increases!!

electric fields increase!!
$$W_{D} = \sqrt{\frac{2\varepsilon_{Si}}{qN_{A}}(V_{bi} + V_{DD})} \text{ (cm)}$$

generalized scaling

$$L, t_{ox}$$
, etc. $\rightarrow L/\kappa, t_{ox}/\kappa$, etc.

$$E \rightarrow \alpha E$$

$$V_{DD} \rightarrow \alpha V_{DD} / \kappa > V_{DD} / \kappa$$

constant field: $\alpha = 1$ constant voltage: $\alpha = \kappa$

See Taur and Ning, pp. 168-169

impact on circuits / systems

quantity

scaled quantity

$$\tau = CV_{DD}/I_D$$
 (sec)

$$\tau/\kappa$$

$$P = V_{DD}I_D \quad (W)$$

$$P/\kappa^2$$

$$D = \frac{\text{no.}}{A_C} \text{ (cm}^{-2})$$

$$D \times \kappa^2$$

$$P/A$$
 (W/cm²)

$$P\tau = CV_{DD}^2$$

$$P\tau/\kappa^3$$

generalized scaling

$$L, t_{ox}$$
, etc. $\rightarrow L/\kappa, t_{ox}/\kappa$, etc.

$$E \rightarrow \alpha E$$

$$V_{DD} \rightarrow \alpha V_{DD} / \kappa > V_{DD} / \kappa$$

constant field: $\alpha = 1$ constant voltage: $\alpha = \kappa$

See Taur and Ning, pp. 168-169

outline

- 1) Objective of scaling
- 2) Constant field scaling
- 3) Non-scaling factors
- 4) The ITRS
- 5) Scaling in practice

bandgap, ψ_B

$$V_T = V_{FB} + 2\psi_B + \sqrt{2q\varepsilon_{Si}N_A(2\psi_B)} / C_{OX} \quad (V)$$

$$V_{FB} = -\frac{E_G}{2q} - \psi_B$$

$$\psi_B = \frac{k_B T}{q} \ln \left(\frac{N_A}{n_i^2} \right)$$

$$V_T \rightarrow V_T/\kappa$$

will take some work!

subthreshold behavior

$$m = 1 + C_D/C_{OX}$$

m does not scale!!

 I_{OFF} increases

 I_{OFF} spec sets minimum V_T

 V_T spec sets minimum V_{DD}

$$I_{ON} \sim (V_{DD} - V_T)$$

V_{DD} scaling has stopped at about 1.1V

inversion layer thickness

$$t_{inv} = \frac{2k_BT/q}{E_S} = \frac{2\varepsilon_{Si}k_BT/q}{Q_i}$$

Q_i does not scale for constant field scaling, so.....

 t_{inv} does not scale

$$C_G = \left(\frac{1}{C_{OX}} + \frac{1}{C_S}\right)^{-1} = \left(\frac{t_{OX}}{\varepsilon_{OX}} + \frac{t_{inv}}{\varepsilon_{Si}}\right)^{-1} \qquad C_G$$

effective mobility

$$\mu_{eff} pprox \mu_{SR} \square E_{eff}^{-\eta}$$

$$E_{eff} = \frac{1}{\varepsilon_{Si}} \left(|Q_{DM}| + \frac{|Q_i|}{2} \right)$$
 increases with scaling

 $\mu_{\rm eff}$ decreases with scaling

outline

- 1) Objective of scaling
- 2) Constant field scaling
- 3) Non-scaling factors
- 4) The ITRS
- 5) Scaling in practice

ITRS

"The International Technology Roadmap for Semiconductors, known throughout the world as the ITRS, is the fifteen-year assessment of the semiconductor industry's future technology requirements. These future needs drive present-day strategies for world-wide research and development among manufacturers' research facilities, universities, and national labs."

http://www.itrs.net/

http://www.itrs.net/

ITRS 2005 Edition

Executive Summary

System Drivers

Design

Test & Test Equipment

Process Integration, Devices & Structures

RF and A/MS Technologies for Wireless Communications

Emerging Research Devices (includes Emerging Research Materia

Front End Processes

Lithography

Interconnect

Factory Integration

Assembly & Packaging

Environment, Safety & Health

Yield Enhancement

Metrology

Modeling & Simulation

ITRS: PIDS (near term)

Process Integration, Devices, and Structures 11

Table 40a High-Performance Logic Technology Requirements—Near-term

Grey cells delineate one of two time periods: either before initial production ramp has started for ultra-thin body fully depleted (UTB FD) SOI or double-gate (DG) MOSFETs, or beyond when planar bulk or UTB FD MOSFETs have reached the limits of practical scaling (see the text and the table notes for further discussion)

notes for further discussion)									
Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
DRAM ½ Pitch (nm) (contacted)	30	70	65	57	50	45	40	36	32
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)(contacted)	90	78	68	59	52	45	40	36	32
MPU Physical Gate Length (nm)	32	28	25	22	20	18	16	14	13
Lg: Physical L _{gate} for High Performance logic (nm) [1]	32	28	25	22	20	18	16	14	13
EOT: Equivalent Oxide Thickness [2]									
Extended planar bulk (Å)	12	11	11	9	7.5	6.5	5	5	
UTB FD (Å)				9	8	7	6	5	5
DG (Å)							8	7	6
Gate Poly Depletion and Inversion-Layer Thick	ness [3]								
Extended Planar Bulk (Å)	7.3	7.4	7.4	2.9	2.8	2.7	2.5	2.5	
UTB FD (Å)				4	4	4	4	4	4
DG (Å)							4	4	4
EOT _{elec} : Electrical Equivalent Oxide Thickness	s in inversio	n [4]							
Extended Planar Bulk (Å)	19.3	18.4	18.4	11.9	10.3	9.2	7.5	7.5	
UTB FD (Å)				13	12	- 11	10	9	9
DG (Å)							12	- 11	10
J _{g,limit} : Maximum gate leakage current density	[5]								
Extended Planar Bulk (A/cm²)	1.88E+02	5.36E+02	8.00E+02	9.09E+02	1.10E+03	1.56E+03	2.00E+03	2.43E+03	
FDSOI (A/cm ²)				7.73E+02	9.50E+02	1.22E+03	1.38E+03	2.07E+03	2.23E+03
DG (A/cm ²)							6.25E+02	7.86E+02	8.46E+02
V _{dd} : Power Supply Voltage (V) [6]	1.1	1.1	1.1	1	1	1	1	0.9	0.9

ITRS: PIDS (long term)

Process Integration, Devices, and Structures 13

Table 40b High-Performance Logic Technology Requirements—Long-term

Grey cells delineate one of two time periods: either before initial production ramp has started for ultra-thin body fully depleted (UTB FD) SOI or double-gate (DG) MOSFETs, or beyond when planar bulk or UTB FD MOSFETs have reached the limits of practical scaling (see the text and the table notes for further discussion).

Year of Production	2014	2015	2016	2017	2018	2019	2020
DRAM ½ Pitch (nm) (contacted)	28	25	22	20	18	16	14
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)(contacted)	28	25	22	20	18	16	14
MPU Physical Gate Length (nm)	11	10	9	8	7	6	б
Lg: Physical Lgate for High Performance logic (nm) [1]	11	10	9	8	7	6	5
EOT: Equivalent Oxide Thickness [2]							
Extended planar bulk (Å)							
UTB FD (Å)	5	5					
DG (Å)	6	6	5	5	5	5	5
Gate Poly Depletion & Inversion-Layer Thickness [3]							
Extended planar bulk (Å)							
UTB FD (Å)	4	4					
DG (Å)	4	4	4	4	4	4	4
EOT _{elec} : Electrical Equivalent Oxide Thickness in inversion [4]							
Extended Planar Bulk (Å)							
UTB FD (Å)	9	9					
DG (Å)	10	10	9	9	9	9	9
J _{g,limit} : Maximum gate leakage current density [5]							
Extended Planar Bulk (A/cm ²)							
FDSOI (A/cm ²)	3.27E+03	3.70E+03					
DG (A/cm ²)	1.00E+03	1.10E+03	1.22E+03	1.38E+03	1.57E+03	1.83E+03	2.20E+03

outline

- 1) Objective of scaling
- 2) Constant field scaling
- 3) Non-scaling factors
- 4) The ITRS
- 5) Scaling in practice

scaling in practice

130nm Logic Technology Featuring 60nm Transistors, Low-K Dielectrics, and Cu Interconnects Scott Thompson, et al.,

Transistor Elements for 30nm Physical Gate Lengths and Beyond Brian Doyle, et al.

Intel Technology Journal, Vol. 6 Issue 2, 2002

speed vs. scaling

device delay vs. scaling

effective mobility vs. scaling

31

I_{ON} and V_{DD} vs. scaling

energy-delay product vs. scaling

outline

- 1) Objective of scaling
- 2) Constant field scaling
- 3) Non-scaling factors
- 4) The ITRS
- 5) Scaling in practice