Support

Support Options

Submit a Support Ticket

 

[Illinois] Phys550 Lecture 18: Motor Proteins/Florescence/DNA and 2-State System I

By Taekjip Ha

University of Illinois at Urbana-Champaign

Published on

Abstract


Bio

Professor Taekjip Ha received his Ph.D. in Physics in 1996, from the University of California, Berkeley. Prior to joining the Physics faculty at the University of Illinois in August 2000, he was a postdoctoral fellow at Lawrence Berkeley National Laboratory (1997) and a postdoctoral research associate in Steven Chu's laboratory in the Department of Physics at Stanford University (1998-2000). He was named 2001 Searle scholar. In 2005, Dr. Ha was named an investigator of the Howard Hughes Medical Institute. In 2008, Dr. Ha was selected by the National Science Foundation to receive a grant to establish and co-direct the Center for the Physics of Living Cells at the University of Illinois.

Professor Ha has achieved many "firsts" in experimental biological physics--the first dectection of dipole-dipole interaction (fluorescence resonance energy transfer, or FRET) between two single molecules; the first observation of "quantum jumps" of single molecules at room temperature; the first detection of the rotation of single molecules; and the first detection of enzyme conformational changes via single-molecule FRET. His most recent work, using single-molecule measurements to understand protein-DNA interactions and enzyme dynamics, has led him to develop novel optical techniques, fluid-handling systems, and surface preparations.

Cite this work

Researchers should cite this work as follows:

  • Taekjip Ha (2013), "[Illinois] Phys550 Lecture 18: Motor Proteins/Florescence/DNA and 2-State System I," http://nanohub.org/resources/19658.

    BibTex | EndNote

Time

Location

University of Illinois at Urbana-Champaign, Urbana, IL

Submitter

NanoBio Node

University of Illinois at Urbana-Champaign

No classroom usage data was found. You may need to enable JavaScript to view this data.

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.