Support

Support Options

Submit a Support Ticket

 

MOSCNT: code for carbon nanotube transistor simulation

By Siyu Koswatta1, Jing Guo2, Dmitri Nikonov3

1. IBM 2. University of Florida 3. Intel Corporation

See also

No results found.

Category

Downloads

Published on

Abstract

Ballistic transport in carbon nanotube metal-oxide-semiconductor field-effect transistors (CNT-MOSFETs) is simulated using the Non-equilibrium Green's function formalism. A cylindrical transistor geometry with wrapped-around gate and doped source/drain regions are assumed. It should be noted that this code does NOT treat Schottky-barrier CNTFETs. Additional information on the device geometry and the simulation procedure is described in [1]. The code can readily simulate band-to-band tunneling in CNT-MOSFETs, as well as p-i-n type device architectures, by appropriately modifying the source/drain doping conditions [2,3].

For the explanation of the simulation procedure, see the article "Towards Multiscale Modeling of Carbon Nanotube Transistors," by Guo, Datta, Lundstrom, and Anantram.

Please report bugs to Siyu Koswatta .

Credits

Originally created by Jing Guo (Purdue University), 2003. Revised by Siyu Koswatta (Purdue University) and Dmitri Nikonov (Intel), 2004.

Copyright of all codes contained in this archive by Purdue Research Foundation, 2003. See attached license which governs distribution, copying and modification.

Cite this work

Researchers should cite this work as follows:

  • Please cite the following publications when using this code to obtain any results you intend to publish:

    1. J. Guo, S. Datta, M.S. Lundstrom and M.P. Anantram, "Towards Multiscale Modeling of Carbon Nanotube Transistors," International J. on Multiscale Computational Engineering, special issue on multiscale methods for emerging technologies, ed. N. Aluru, 2, 257-276, 2004.
    2. S. O. Koswatta, M. S. Lundstrom, M. P. Anantram, and D. E. Nikonov, "Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors," Appl. Phys. Lett., 87, 253107, 2005.
    3. S. O. Koswatta, D. E. Nikonov, and M. S. Lundstrom, "Computational study of carbon nanotube p-i-n tunnel FETs," IEEE IEDM Tech. Digest, pp. 518, 2005.
  • Siyu Koswatta; Jing Guo; Dmitri Nikonov (2006), "MOSCNT: code for carbon nanotube transistor simulation," http://nanohub.org/resources/1989.

    BibTex | EndNote

Tags

No classroom usage data was found. You may need to enable JavaScript to view this data.

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.