
The MVS Nanotransistor Model:
A Case Study in Compact Modeling

Shaloo Rakheja and Dimitri Antoniadis

Microsystems Technology Laboratories, MIT

November 13, 2014

Thanks to Dr. Geoffrey Coram and Prof. Jaijeet Roychowdhury

shaloo@mit.edu

mailto:shaloo@mit.edu

This presentation focuses on

shaloo@mit.edu
Page 2

I. MVS model
• Basic model

formulation
• Mathematical issues

II. Model implementation
in Verilog-A
• Performance-

limiting constructs
• Examples from

MVS

35
min

15
min

PART I
MVS MODEL FORMULATION

shaloo@mit.edu
Page 3

What is MVS model?

shaloo@mit.edu
Page 4

MIT Virtual Source (MVS)
nanotransistor model gives
currents and charges as
functions of terminal
voltages.

Currents
Id = f(Vg,Vd,Vs,Vb)
Ig = Ib = 0

Charges
Qs = f1(Vg,Vd,Vs,Vb)
Qd = f2(Vg,Vd,Vs,Vb)
Qb = f3(Vg,Vd,Vs,Vb)
Qg = -(Qs+Qd+Qb)

MVS is a source-referenced model.

DC Model

shaloo@mit.edu
Page 5

Charge at VS Velocity at VS

Empirical
function

 10 fitting parameters.
 most of the parameters are physical

and can easily be obtained through
device characterization.

 describes quasi-ballistic silicon,
III-V and graphene devices.

Leff x

EC

x0 0

Vg

Vd’ Vs’

vx0

Dynamic MVS model

shaloo@mit.edu
Page 6

Ward-Dutton charge
partitioning scheme

• Valid in quasi-static
conditions in the channel.

• At low Vds, transport can be
modeled as drift-diffusion
with no velocity saturation
(DD-NVSAT).

• Quasi-ballistic and DD-
NVSAT charges are blended
w/ Fsat

2.

mailto:shaloo@mit.edu

Quasi-ballistic charges

shaloo@mit.edu
Page 7

Leff x

EC = -qV(x)

x0 0

Parabolic

Linear

vx0

Current continuity

Energy balance

0≤ ζ ≤1: Fraction of Vds
energy gained by carriers.

Dynamic MVS model

shaloo@mit.edu
Page 8

• Option to choose
between only the
DD-NVSAT charge
model or blended
QB charge model.

• Body charge, QB, is
calculated using
approx. surface
potential formulation
[check Tsividis].

Parasitic
fringing
charges

Dynamic MVS model

shaloo@mit.edu
Page 9

• Capacitance is the
slope of charges with
respect to voltages.

Charge
Smoothnes
s issues ??

1. A. Khakifirooz et al., “A simple semi-empirical short-channel
MOSFET current-voltage model continuous across all regions of
operation and employing only physical parameters,” IEEE Trans.
Electron Devices, vol. 56, no. 8, July 2009.

2. L. Wei et al., “ Virtual-source-based self-consistent current and
charge FET models: from ballistic to drift-diffusion velocity-
saturation operation,” IEEE Trans. Electron Devices, vol. 59, no.
5, May 2012.

3. S. Rakheja and D. Antoniadis, “MVS 1.0.1 Nanotransistor Model
(Silicon),” https://nanohub.org/resources/19684 (Nov. 2013)

shaloo@mit.edu
Page 10

References for MVS model equations

https://nanohub.org/resources/19684

MATHEMATICAL ISSUES IN
MVS MODEL

shaloo@mit.edu
Page 11

“Smoothness” is key in compact
modeling

shaloo@mit.edu
Page 12

Need for smoothness
in model functions and

their slopes

DC/transient/AC
analysis of circuits Small-signal

resistance/capacitance/indu
ctance

Physical systems are
smooth at fine enough
resolution

“A quick circuit simulation primer” https://nanohub.org/resources/20610

Fundamentals: continuity

shaloo@mit.edu
Page 13

ε
y

x

δ

test point

x0

y0 =
f(x0)

f(x) is continuous at x0 if:

given any ε > 0

we can always find δ > 0
such that:

|f(x)-f(x0)| < ε
for all x satisfying |x-x0| < δ

Fundamentals: differentiability

shaloo@mit.edu
Page 14

y

x x=a

x=a x

y

Derivative:

Function f(x) is differentiable if:
 f ’(x) exists at all x and is continuous

A function can fail to be differentiable
at a point if either there is a cusp in the
graph or a point of vertical tangency.

Causes of non-smoothness in
models

• Idealization
– Look out for “if” conditions

• Beware of constructs that blow up
– Ex: y=1/(x+a)has a problem at x=-a
– Ex: y=log(x); dy/dx = 1/x has a problem at x=0

• Examples of non-smooth functions:
– sign, abs, max, min

• Empirical functions to stitch various regions of operation often lead
to non-differentiability.

 shaloo@mit.edu

Page 15

“Dealing with common numerical issues in compact models”
https://nanohub.org/resources/21262

Causes of non-smoothness in
models

• Idealization
– Look out for “if” conditions

• Beware of constructs that blow up
– Ex: y=1/(x+a)has a problem at x=-a
– Ex: y=log(x); dy/dx = 1/x has a problem at x=0

• Examples of non-smooth functions:
– sign, abs, max, min

• Empirical functions to stitch various regions of operation often
lead to non-differentiability.

 shaloo@mit.edu

Page 16

Example from MVS

shaloo@mit.edu
Page 17

Source terminal charge in quasi-ballistic case in MVS

At Vds = 0V, Qsb will not
exist  clearly a problem.

How can this be fixed?

shaloo@mit.edu
Page 18

Example from MVS

Taking limits

From MVS implementation

Causes of non-smoothness in
models

• Idealization
– Look out for “if” conditions

• Beware of constructs that blow up
– Ex: y=1/(x+a)has a problem at x=-a
– Ex: y=log(x); dy/dx = 1/x has a problem at x=0

• Examples of non-smooth functions:
– sign, abs, max, min

• Empirical functions to stitch various regions of operation often
lead to non-differentiability.

 shaloo@mit.edu

Page 19

Voltage definitions in MVS model
use non-smooth functions

shaloo@mit.edu
Page 20

type =
+1 for n-FET
-1 for p-FET

MVS uses source-drain swapping feature forcing
the model to be symmetric.

Voltage definitions- abs and max
functions

shaloo@mit.edu
Page 21

abs(x)

x
∂(abs(x))/∂x

x -1

+1
x y

max(x,y)

Issue 1: abs(.) & max(.) functions
continuity and differentiability ?

Current definition

shaloo@mit.edu
Page 22

-1

+1

x

sign(x)

Issue 2: sign(.) function
continuity and differentiability ? ×

Gummel Symmetry Test (GST)

shaloo@mit.edu
Page 23

V0+Vx
V0-Vx

Vg

Test circuit

Id

• Benchmark test in compact models

and important for RF/analog.

• Odd function Id(Vds)=-Id(-Vds).

• Odd-order derivative of Id should

be continuous at Vx = 0V.

• Even-order derivative of Id
should exist and be equal to 0 at
Vx= 0V.

In MVS model, current is an odd
function of Vx

shaloo@mit.edu
Page 24

Vx (V)

Vg = 0.4:0.2:0.8 V

✔Odd
function: first
criteria of GST
satisfied

I d
 (A

)

First derivative of current wrt Vx

shaloo@mit.edu
Page 25

Non-smooth
 cusp

Vg = 1V

Adding a correction term in Vgs
and Vbs

shaloo@mit.edu
Page 26

Vg = 1V

Vg = 0.2V

shaloo@mit.edu
Page 27

First derivative of current wrt Vx

Vg = 1V

With Vcorr

Without Vcorr

shaloo@mit.edu
Page 28

First and second derivatives of
current with respect to Vx (with Vcorr)

∂Id/∂Vx

∂2Id/∂Vx
2

Smoothness ??

Vg = 1V
ΔVx (grid) = 10-4V

Third derivative of current with
respect to Vx

shaloo@mit.edu
Page 29

Vgs = 1V
ΔVx (grid) = 10-4V

Discontinuity

shaloo@mit.edu
Page 30

Third derivative of current with
respect to Vx

ΔVx (grid) = 10-2V (red)

shaloo@mit.edu
Page 31

Third derivative of current with
respect to Vx

ΔVx (grid) = 10-3V (black)

Partitioned charges in MVS
model

shaloo@mit.edu
Page 32

Models converge for
low-Vds as expected.

Potential problem

Cgs & Cgd versus Vds
Above threshold (Vgs = 1V)

shaloo@mit.edu
Page 33

Discontinuity

Summary
• MVS is a source-referenced model.

• To ensure model symmetry for GST, source/drain swapping is
implemented.

• Source/drain swapping leads to non-differentiable higher-order
derivatives of currents and charges at Vds = 0V.

• Discontinuity in Cgg @ Vds = 0V is much less than the
discontinuity in Cgs and Cgd.

• Discontinuities also exist in Cds and Cdd.

• Adding body charge worsens the discontinuity in capacitance.
shaloo@mit.edu
Page 34

ADDRESSING THE ISSUE OF
SMOOTHNESS IN MVS

shaloo@mit.edu
Page 35

shaloo@mit.edu
Page 36

Smoothing functions

smoothsign function is used in
place of the variable dir in the
code.

Derivative of
smoothabs

Use two different values of correction: ε and ε2

Smoothabs

shaloo@mit.edu
Page 37

ε=10-3

abs

smoothabs

ε=10-3

Δx=10-4

Smoothsign

shaloo@mit.edu
Page 38

sign smoothsign
ε=10-3

smoothsign
ε=10-2

Other possible implementations
of smoothing functions

shaloo@mit.edu
Page 39

sign(x)  tanh(k*x)

step(x)  0.5*(1+smoothsign(x))

abs(x)  2∫0x smoothstep(y)dy –x

Reference: Prof. Roychowdhury’s lecture notes https://nanohub.org/resources/21262

smoothsign

smoothabs

smoothstep
k = 100

k is the smoothing parameter & governs
the width of the transition region.

https://nanohub.org/resources/21262

Smoothing

• Several different implementations of smoothabs(),
smoothsign() etc. exist.

• The value of smoothing parameters must be carefully
chosen for a device as these values depend on device
parameters.

• The discretization in voltage vector is important since
derivatives are being computed numerically.

• Finally, the smoothing parameters may also depend on
the terminal voltage Vgs in the transistor.

shaloo@mit.edu
Page 40

shaloo@mit.edu
Page 41

What problems do you foresee in the MVS
transistor model by using these smoothing
functions?

Problem in first derivative of
current

shaloo@mit.edu
Page 42

Red 
original
Blue 
smoothing

Smoothing may not
always capture the

correct physical picture !

45 nm device, ε=10-4, ε2=10-2

ΔVds = 2ε; Vgs = 1V

shaloo@mit.edu
Page 43

Symbols 
smoothing

Vds (V)

C
ap

ac
ita

nc
e

(F
)

Vds (V)

Cgs

Cgd

Cds

Cdd

45 nm device, ε=10-4, ε2=10-2
ΔVds = 2ε, Vgs = 0.2V

shaloo@mit.edu
Page 44

C
ap

ac
ita

nc
e

(F
)

Symbols 
smoothing

Cgs

Cgd

Vds (V)

Cds

Cdd

Vds (V)

shaloo@mit.edu
Page 45

Summary: smoothing capacitances

• With smoothing the abs, sign, and max functions only
for charge calculations, capacitances can be
smoothened.

• Smooth capacitances achieved for both below and
above threshold voltages.

• Even with finite body charge, the capacitances remain
smooth.

• As a next step, vecvalder will be tried.

OVERFLOW PROBLEMS

shaloo@mit.edu
Page 46

Overflow problems

• Watch out for fast growing functions like exponentials

– trap IEEE FP errors early on; design your model
to avoid them

– Note: e709 = 10308 is the largest double precision
number

– Be careful when subtracting two large numbers:

• Try in MATLAB: (exp(x)+x)-exp(x) for x =
40

shaloo@mit.edu
Page 47

Know the right way to calculate
stuff- 1/2

shaloo@mit.edu
Page 48

• Use 2*sin2(x/2) instead
of (1-cos(x)) when x is
tiny

– 1-cos(x)
catastrophically
loses precision for
tiny x.

Know the right way to calculate
stuff- 2/2

shaloo@mit.edu
Page 49

Function Better implementation

Plot both lhs and rhs functions for x between (-1e-
15 to 1e-15) and notice the difference !!

PART II
PERFORMANCE-INHIBITING
CONSTRUCTS IN VERILOG-A

shaloo@mit.edu
Page 50

Avoid
1. Unused variables

2. Floating nodes

3. Use of events  initial_step, final_step,cross

4. Use of block-level modeling features  transition, slew,
last_crossing, absdelay

5. Use of loops

6. log() versus ln() [Verilog-A uses log() as base-10 logarithm
unlike MATLAB.]

shaloo@mit.edu
Page 51

Also avoid

7. Superfluous assignments

8. Memory states

9. Discontinuity  if clauses; functions such as abs

10. Numerical hazards  division by zero, exponential
growth, domain & overflow problems

11. Constructs that are inhibit performance

shaloo@mit.edu
Page 52

Example of 1-6 are given in the talk:
https://nanohub.org/resources/18621

Avoid superfluous assignments

shaloo@mit.edu
Page 53

x = V(a,b)/R;
if (type == 1)
 x = V(a,b)/R1;
else
 x = V(b,a)/R2;

Diagnostic message from compiler:
Warning: Assignment to ‘x’ may be superfluous.
 [filename.va, line 1]

(1)
(2)
(3)

(4)
(5)

Superfluous

Memory states

shaloo@mit.edu
Page 54

1. Also known as hidden states.

2. Variables are initialized to zero on first call to module.

3. Simulator will retain the value of the previous iteration if
the variable is not assigned before it is used.

4. Memory states cause unexpected behavior.

5. These states are not typically identified in DC/TRAN
simulations.

Declare and initialize variables before use

Avoid memory/hidden states

shaloo@mit.edu
Page 55

The variable psis must always be assigned a value.

Simulation error due to hidden state in MVS 1.0.0 (fixed in 1.0.1)
Discovered through periodic steady state (PSS) analysis

Evaluating $exp()

shaloo@mit.edu
Page 56

Explicitly linearize $exp()above a break-point

Recommended practice

shaloo@mit.edu
Page 57

Evaluating $ln()

psis = (1.0 + ln(ln(1.0 +exp(eta0))));

eta0  large negative, exp(eta0) = 0  ln(0) can’t be evaluated

Adding a small correction `SMALL_VALUE fixed the problem

psis = (1.0 + ln(ln(1.0 +`SMALL_VALUE+ exp(eta0))));

Defined as 1e-10

Avoid extra state variables  use
current contributions

• Try to formulate contributions as currents

– I(a,b) <+ …

– Use existing state variables & no increase in matrix size

• Implement a nonlinear capacitance as

– I(a,b) <+ f(V(a,b));

• But voltage contributions are better for tiny resistances
(convergence)

– V(a,b) <+ I(a,b) * Rab;
shaloo@mit.edu
Page 58

• Truly voltage controlled elements must be implemented
with voltage contributions.

• Inductances in Verilog-A will add an additional state
variable

– V(a,b) <+ L * ddt(I(a,b));

– I(a,b) <+ idt(V(a,b))/L;

shaloo@mit.edu
Page 59

Avoid extra state variables  use voltage
contributions ONLY when needed

✔

The ddt() form translates to
-Xa + Xb + ddt(L*Iab) = 0

Recall: MNA

• When variables that depend on ddt() are used in
conditionals, the compiler must create extra branch
equations

– Do not place the function ddt() within
conditionals

– Place the arguments of ddt() within conditionals

shaloo@mit.edu
Page 60

Avoid extra state variables 
branches from conditionals

Avoid extra state variables 
branches from conditionals

shaloo@mit.edu
Page 61

Qbd_ddt = ddt(Qbd);
Qbs_ddt = ddt(Qbs);

if (Mode == 1) begin
 t0 = TYPE*Ibd + Qbd_ddt;
 t1 = TYPE*Ibs + Qbs_ddt;
end
else begin
 t1 = TYPE*Ibd + Qbd_ddt;
 t0 = TYPE*Ibs + Qbs_ddt;
end
I(b,di) <+ t0;
I(b,si) <+ t1;

if (Mode == 1) begin
 t0 = TYPE*Ibd;
 arg0 = Qbd;
 t1 = TYPE*Ibs;
 arg1 = Qbs;
end
else begin
 t1 = TYPE*Ibd;
 arg1 = Qbd;
 t0 = TYPE*Ibs;
 arg0 = Qbs;
end
I(b,di) <+ t0 + ddt(arg0);
I(b,si) <+ t1 + ddt(arg1);

✔

Summary

shaloo@mit.edu
Page 62

Coding
style

• Execution speed
• Memory use

Four major aspects of
Verilog-A coding

Look & feel
Variables

Built-in functions

Debugging

Understand
the physics
better !

References

shaloo@mit.edu
Page 63

1. http://www.mos-ak.org/baltimore/talks/11_Mierzwinski_MOS-
AK_Baltimore.pdf
2. www.mos-ak.org/sanfrancisco/.../01_McAndrew_MOS-AK_SF08.ppt
3. www.mos-ak.org/montreux/papers/06_Coram_MOS-AK06.ppt
4. G. Coram, “How to (and how not not) write a compact model in Verilog-
A”, BMAS 2004.
5. Tianshi Wang; Jaijeet Roychowdhury (2013), "Guidelines for Writing
NEEDS-certified Verilog-A Compact Models,"
https://nanohub.org/resources/18621
6. G. Coram, “Verilog-A present status and guidelines,”
https://nanohub.org/resources/18557

http://www.mos-ak.org/baltimore/talks/11_Mierzwinski_MOS-AK_Baltimore.pdf
http://www.mos-ak.org/baltimore/talks/11_Mierzwinski_MOS-AK_Baltimore.pdf
https://nanohub.org/resources/18621
https://nanohub.org/resources/18557

shaloo@mit.edu
Page 64

MVS 1.0.0
Aug. 2013

MVS 1.0.1
Nov. 2013

Issues:

o Unused variables
o Hidden states
o Parameter range
o Indentation

Issues:
o Capacitance

discontinuity
o Better ways

needed to fix
some other
numerical issues
in VA

Next version
<near

future>

o Can we address the
non-
differentiability of
higher-order
current
derivatives?

Evolution of MVS

	The MVS Nanotransistor Model: �A Case Study in Compact Modeling
	This presentation focuses on
	Part i�MVS model formulation
	What is MVS model?
	DC Model
	Dynamic MVS model
	Quasi-ballistic charges
	Dynamic MVS model
	Dynamic MVS model
	References for MVS model equations
	Mathematical issues in mvs model
	“Smoothness” is key in compact modeling
	Fundamentals: continuity
	Fundamentals: differentiability
	Causes of non-smoothness in models
	Causes of non-smoothness in models
	Example from MVS
	Example from MVS
	Causes of non-smoothness in models
	Voltage definitions in MVS model use non-smooth functions
	Voltage definitions- abs and max functions
	Current definition
	Gummel Symmetry Test (GST)
	In MVS model, current is an odd function of Vx
	First derivative of current wrt Vx
	Adding a correction term in Vgs and Vbs
	First derivative of current wrt Vx
	First and second derivatives of current with respect to Vx (with Vcorr)
	Third derivative of current with respect to Vx
	Third derivative of current with respect to Vx
	Third derivative of current with respect to Vx
	Partitioned charges in MVS model
	Cgs & Cgd versus Vds �Above threshold (Vgs = 1V)
	Summary
	Addressing the issue of smoothness in mvs
	Smoothing functions
	Smoothabs
	Smoothsign
	Other possible implementations of smoothing functions
	Smoothing
	What problems do you foresee in the MVS transistor model
	Problem in first derivative of current
	45 nm device, ε=10-4, ε2=10-2�ΔVds = 2ε; Vgs = 1V
	45 nm device, ε=10-4, ε2=10-2�ΔVds = 2ε, Vgs = 0.2V
	Summary: smoothing capacitances
	overflow problems
	Overflow problems
	Know the right way to calculate stuff- 1/2
	Know the right way to calculate stuff- 2/2
	Part II�performance-inhibiting constructs in verilog-A
	Avoid
	Also avoid
	Avoid superfluous assignments
	Memory states
	Avoid memory/hidden states
	Evaluating $exp()
	Evaluating $ln()
	Avoid extra state variables  use current contributions
	Avoid extra state variables  use voltage contributions ONLY when needed
	Avoid extra state variables  branches from conditionals
	Avoid extra state variables  branches from conditionals
	Summary
	References
	Evolution of MVS

