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I. MVS model 
• Basic model 

formulation 
• Mathematical issues 

II. Model implementation 
in Verilog-A 
• Performance-

limiting constructs 
• Examples from 

MVS 
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PART I 
MVS MODEL FORMULATION 
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What is MVS model? 
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MIT Virtual Source (MVS) 
nanotransistor model gives 
currents and charges as 
functions of terminal 
voltages. 

 

 
Currents 
Id = f(Vg,Vd,Vs,Vb) 
Ig = Ib = 0 

Charges 
Qs = f1(Vg,Vd,Vs,Vb) 
Qd = f2(Vg,Vd,Vs,Vb) 
Qb = f3(Vg,Vd,Vs,Vb) 
Qg = -(Qs+Qd+Qb) 

MVS is a source-referenced model. 



DC Model 
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Charge at VS Velocity at VS 

Empirical 
function 

 10 fitting parameters. 
  most of the parameters are physical 

and can easily be obtained through 
device characterization. 

  describes quasi-ballistic silicon, 
III-V and graphene devices. 

Leff x 

EC 

x0 0 

Vg
 

Vd’ Vs’ 

vx0 



Dynamic MVS model 
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Ward-Dutton charge 
partitioning scheme 

• Valid in quasi-static 
conditions in the channel.  
 

• At low Vds, transport can be 
modeled as drift-diffusion 
with no velocity saturation 
(DD-NVSAT). 
 

• Quasi-ballistic and DD-
NVSAT charges are blended 
w/ Fsat

2. 
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Quasi-ballistic charges 
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Leff x 

EC = -qV(x) 

x0 0 

Parabolic 

Linear 

vx0 

Current continuity 

Energy balance 

0≤ ζ ≤1: Fraction of Vds 
energy gained by carriers. 



Dynamic MVS model 
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• Option to choose 
between only the 
DD-NVSAT charge 
model or blended 
QB charge model. 
 

• Body charge, QB, is 
calculated using 
approx. surface 
potential formulation 
[check Tsividis]. 

Parasitic 
fringing 
charges 



Dynamic MVS model 
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• Capacitance is the 
slope of charges with 
respect to voltages. 

 

Charge  
Smoothnes
s issues ?? 
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References for MVS model equations 

https://nanohub.org/resources/19684


MATHEMATICAL ISSUES IN 
MVS MODEL 
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“Smoothness” is key in compact 
modeling 
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Need for smoothness 
in model functions and 

their slopes 

DC/transient/AC 
analysis of circuits  Small-signal 

resistance/capacitance/indu
ctance  

Physical systems are 
smooth at fine enough 
resolution 

“A quick circuit simulation primer” https://nanohub.org/resources/20610 



Fundamentals: continuity 
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ε 
y 

x 

δ 

test point 

x0 

y0 =  
f(x0) 

f(x) is continuous at x0 if: 
 
given any ε > 0  
 
we can always find δ > 0 
such that: 
 
|f(x)-f(x0)| < ε  
for all x satisfying |x-x0| < δ 
 



Fundamentals: differentiability 
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y 

x x=a 

x=a x 

y 

Derivative: 

Function f(x) is differentiable if: 
 f ’(x) exists at all x and is continuous 
 
A function can fail to be differentiable 
at a point if either there is a cusp in the 
graph or a point of vertical tangency.  



Causes of non-smoothness in 
models 

• Idealization 
– Look out for “if” conditions 

• Beware of constructs that blow up 
– Ex: y=1/(x+a)has a problem at x=-a  
– Ex: y=log(x); dy/dx = 1/x has a problem at x=0   

• Examples of non-smooth functions: 
– sign, abs, max, min 

• Empirical functions to stitch various regions of operation often lead 
to non-differentiability. 
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“Dealing with common numerical issues in compact models”  
https://nanohub.org/resources/21262 



Causes of non-smoothness in 
models 

• Idealization 
– Look out for “if” conditions 

• Beware of constructs that blow up 
– Ex: y=1/(x+a)has a problem at x=-a  
– Ex: y=log(x); dy/dx = 1/x has a problem at x=0   

• Examples of non-smooth functions: 
– sign, abs, max, min 

• Empirical functions to stitch various regions of operation often 
lead to non-differentiability. 
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Example from MVS 
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Source terminal charge in quasi-ballistic case in MVS 

At Vds = 0V, Qsb will not 
exist  clearly a problem.   

How can this be fixed? 
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Example from MVS 

Taking limits  

From MVS implementation 



Causes of non-smoothness in 
models 

• Idealization 
– Look out for “if” conditions 

• Beware of constructs that blow up 
– Ex: y=1/(x+a)has a problem at x=-a  
– Ex: y=log(x); dy/dx = 1/x has a problem at x=0   

• Examples of non-smooth functions: 
– sign, abs, max, min 

• Empirical functions to stitch various regions of operation often 
lead to non-differentiability. 
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Voltage definitions in MVS model 
use non-smooth functions 
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type =  
+1 for n-FET  
-1 for p-FET  

MVS uses source-drain swapping feature forcing 
the model to be symmetric. 



Voltage definitions- abs and max 
functions 
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abs(x) 

x 
∂(abs(x))/∂x 

x -1 

+1 
x y 

max(x,y) 

Issue 1: abs(.) & max(.) functions 
continuity and differentiability ? 



Current definition 
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-1 

+1 

x 

sign(x) 

Issue 2: sign(.) function 
continuity and differentiability ? × 



Gummel Symmetry Test (GST) 
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V0+Vx 
V0-Vx 

Vg 

Test circuit 

Id 

 
• Benchmark test in compact models 

and important for RF/analog. 
 
• Odd function Id(Vds)=-Id(-Vds). 
 
• Odd-order derivative of Id should 

be continuous at Vx = 0V. 
 

• Even-order derivative of Id 
should exist and be equal to 0 at 
Vx= 0V. 



In MVS model, current is an odd 
function of Vx 
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Vx (V) 

Vg = 0.4:0.2:0.8 V  

✔Odd 
function: first 
criteria of GST 
satisfied 

I d
 (A

) 



First derivative of current wrt Vx 
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Non-smooth 
      cusp 

Vg = 1V 



Adding a correction term in Vgs 
and Vbs 
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Vg = 1V 

Vg = 0.2V 
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First derivative of current wrt Vx 

Vg = 1V 

With Vcorr 

Without Vcorr 
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First and second derivatives of 
current with respect to Vx (with Vcorr) 

∂Id/∂Vx
 

∂2Id/∂Vx
2 

Smoothness ?? 

Vg = 1V 
ΔVx (grid) = 10-4V 



Third derivative of current with 
respect to Vx 
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Vgs = 1V 
ΔVx (grid) = 10-4V 

Discontinuity 
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Third derivative of current with 
respect to Vx 

ΔVx (grid) = 10-2V (red) 
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Third derivative of current with 
respect to Vx 

ΔVx (grid) = 10-3V (black) 



Partitioned charges in MVS 
model 
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Models converge for 
low-Vds as expected. 

Potential problem 



Cgs & Cgd versus Vds  
Above threshold (Vgs = 1V) 
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Discontinuity 



Summary  
• MVS is a source-referenced model. 

• To ensure model symmetry for GST, source/drain swapping is 
implemented. 

• Source/drain swapping leads to non-differentiable higher-order 
derivatives of currents and charges at Vds = 0V. 

• Discontinuity in Cgg @ Vds = 0V is much less than the 
discontinuity in Cgs and Cgd.  

• Discontinuities also exist in Cds and Cdd. 

• Adding body charge worsens the discontinuity in capacitance. 
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ADDRESSING THE ISSUE OF 
SMOOTHNESS IN MVS  
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Smoothing functions 

smoothsign function is used in 
place of the variable dir in the 
code. 

Derivative of 
smoothabs 

Use two different values of correction: ε and ε2  



Smoothabs 
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ε=10-3 

abs 

smoothabs 

ε=10-3 

Δx=10-4 



Smoothsign  
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sign smoothsign 
ε=10-3 

smoothsign 
ε=10-2 



Other possible implementations 
of smoothing functions 
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sign(x)  tanh(k*x)  
 
step(x)  0.5*(1+smoothsign(x)) 
 
abs(x)  2∫0x smoothstep(y)dy –x  

Reference: Prof. Roychowdhury’s lecture notes https://nanohub.org/resources/21262  

smoothsign 

smoothabs 

smoothstep 
k = 100 

k is the smoothing parameter & governs 
the width of the transition region. 

https://nanohub.org/resources/21262


Smoothing 

• Several different implementations of smoothabs(), 
smoothsign() etc. exist.  

• The value of smoothing parameters must be carefully 
chosen for a device as these values depend on device 
parameters. 

• The discretization in voltage vector is important since 
derivatives are being computed numerically. 

• Finally, the smoothing parameters may also depend on 
the terminal voltage Vgs in the transistor.  
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What problems do you foresee in the MVS 
transistor model by using these smoothing 
functions? 



Problem in first derivative of 
current 
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Red  
original 
Blue  
smoothing 

Smoothing may not 
always capture the 

correct physical picture ! 



45 nm device, ε=10-4, ε2=10-2 

ΔVds = 2ε; Vgs = 1V 
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Symbols  
smoothing 

Vds (V) 

C
ap

ac
ita

nc
e 

(F
) 

Vds (V) 

Cgs 

Cgd 

Cds 

Cdd 



45 nm device, ε=10-4, ε2=10-2 
ΔVds = 2ε, Vgs = 0.2V 
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C
ap

ac
ita

nc
e 

(F
) 

Symbols  
smoothing 

Cgs 

Cgd 

Vds (V) 

Cds 

Cdd 

Vds (V) 
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Summary: smoothing capacitances 

• With smoothing the abs, sign, and max functions only 
for charge calculations, capacitances can be 
smoothened. 

• Smooth capacitances achieved for both below and 
above threshold voltages. 

• Even with finite body charge, the capacitances remain 
smooth. 

• As a next step, vecvalder will be tried.  



OVERFLOW PROBLEMS 
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Overflow problems 

• Watch out for fast growing functions like exponentials 

– trap IEEE FP errors early on; design your model 
to avoid them 

– Note: e709 = 10308 is the largest double precision 
number 

– Be careful when subtracting two large numbers: 

• Try in MATLAB: (exp(x)+x)-exp(x) for x = 
40  
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Know the right way to calculate 
stuff- 1/2 
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• Use 2*sin2(x/2) instead 
of (1-cos(x)) when x is 
tiny 

– 1-cos(x) 
catastrophically 
loses precision for 
tiny x. 



Know the right way to calculate 
stuff- 2/2 
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Function Better implementation 

Plot both lhs and rhs functions for x between (-1e-
15 to 1e-15) and notice the difference !! 



PART II 
PERFORMANCE-INHIBITING 
CONSTRUCTS IN VERILOG-A 
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Avoid 
1. Unused variables 

2. Floating nodes 

3. Use of events  initial_step, final_step,cross  

4. Use of block-level modeling features  transition, slew, 
last_crossing, absdelay 

5. Use of loops 

6. log() versus ln() [Verilog-A uses log() as base-10 logarithm 
unlike MATLAB.] 
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Also avoid  

7. Superfluous assignments 

8. Memory states 

9. Discontinuity  if clauses; functions such as abs 

10. Numerical hazards  division by zero, exponential 
growth, domain & overflow problems  

11. Constructs that are inhibit performance  
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Example of 1-6 are given in the talk: 
https://nanohub.org/resources/18621 
 
 



Avoid superfluous assignments 
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x = V(a,b)/R; 
if (type == 1) 
 x = V(a,b)/R1; 
else 
 x = V(b,a)/R2; 

Diagnostic message from compiler: 
Warning: Assignment to ‘x’ may be superfluous. 
 [ filename.va, line 1 ]  

(1) 
(2) 
(3) 

(4) 
(5) 

Superfluous 



Memory states 
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1. Also known as hidden states. 

2. Variables are initialized to zero on first call to module.  

3. Simulator will retain the value of the previous iteration if 
the variable is not assigned before it is used. 

4. Memory states cause unexpected behavior. 

5. These states are not typically identified in DC/TRAN 
simulations. 

Declare and initialize variables before use 



Avoid memory/hidden states 
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The variable psis must always be assigned a value. 

Simulation error due to hidden state in MVS 1.0.0 (fixed in 1.0.1) 
Discovered through periodic steady state (PSS) analysis 



Evaluating $exp() 
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Explicitly linearize $exp()above a break-point 

Recommended practice 
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Evaluating $ln() 

psis  =  ( 1.0 + ln( ln( 1.0 +exp( eta0 )))); 
 
eta0  large negative, exp(eta0) =  0   ln(0) can’t be evaluated 
 

Adding a small correction `SMALL_VALUE fixed the problem 
 
psis  =  ( 1.0 + ln( ln( 1.0 +`SMALL_VALUE+ exp( eta0 )))); 

Defined as 1e-10 



Avoid extra state variables  use 
current contributions  

• Try to formulate contributions as currents 

– I(a,b) <+ …  

– Use existing state variables & no increase in matrix size  

• Implement a nonlinear capacitance as 

– I(a,b) <+ f(V(a,b));  

• But voltage contributions are better for tiny resistances 
(convergence) 

– V(a,b) <+ I(a,b) * Rab;  
shaloo@mit.edu 
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• Truly voltage controlled elements must be implemented 
with voltage contributions. 

• Inductances in Verilog-A will add an additional state 
variable  

– V(a,b) <+ L * ddt(I(a,b)); 

– I(a,b) <+ idt(V(a,b))/L;  
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Avoid extra state variables  use voltage 
contributions ONLY when needed 

✔ 

The ddt() form translates to 
-Xa + Xb + ddt(L*Iab) = 0  

 
Recall: MNA 



• When variables that depend on ddt() are used in 
conditionals, the compiler must create extra branch 
equations 

– Do not place the function ddt() within 
conditionals 

– Place the arguments of ddt() within conditionals 
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Avoid extra state variables  
branches from conditionals 



Avoid extra state variables  
branches from conditionals 
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Qbd_ddt = ddt(Qbd); 
Qbs_ddt = ddt(Qbs); 
 
if (Mode == 1) begin 
 t0 = TYPE*Ibd + Qbd_ddt; 
 t1 = TYPE*Ibs + Qbs_ddt; 
end 
else begin 
 t1 = TYPE*Ibd + Qbd_ddt; 
 t0 = TYPE*Ibs + Qbs_ddt; 
end 
I(b,di) <+ t0; 
I(b,si) <+ t1; 
 
  

if (Mode == 1) begin 
 t0 = TYPE*Ibd; 
 arg0 = Qbd; 
 t1 = TYPE*Ibs; 
 arg1 = Qbs; 
end 
else begin 
 t1 = TYPE*Ibd; 
 arg1 = Qbd; 
 t0 = TYPE*Ibs; 
 arg0 = Qbs; 
end 
I(b,di) <+ t0 + ddt(arg0); 
I(b,si) <+ t1 + ddt(arg1); 
 
  

✔ 



Summary 
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Coding 
style  

• Execution speed 
• Memory use 

Four major aspects of 
Verilog-A coding 

Look & feel 
Variables 

Built-in functions 

Debugging 

Understand 
the physics 
better ! 



References 

shaloo@mit.edu 
Page 63 

1. http://www.mos-ak.org/baltimore/talks/11_Mierzwinski_MOS-
AK_Baltimore.pdf 
2. www.mos-ak.org/sanfrancisco/.../01_McAndrew_MOS-AK_SF08.ppt 
3. www.mos-ak.org/montreux/papers/06_Coram_MOS-AK06.ppt 
4. G. Coram, “How to (and how not not) write a compact model in Verilog-
A”, BMAS 2004.  
5. Tianshi Wang; Jaijeet Roychowdhury (2013), "Guidelines for Writing 
NEEDS-certified Verilog-A Compact Models," 
https://nanohub.org/resources/18621 
6. G. Coram, “Verilog-A present status and guidelines,” 
https://nanohub.org/resources/18557  

http://www.mos-ak.org/baltimore/talks/11_Mierzwinski_MOS-AK_Baltimore.pdf
http://www.mos-ak.org/baltimore/talks/11_Mierzwinski_MOS-AK_Baltimore.pdf
https://nanohub.org/resources/18621
https://nanohub.org/resources/18557


shaloo@mit.edu 
Page 64 

MVS 1.0.0 
Aug. 2013 

  

MVS 1.0.1 
Nov. 2013 

  
Issues: 

o Unused variables 
o Hidden states 
o Parameter range 
o Indentation 

Issues: 
o Capacitance 

discontinuity  
o Better ways 

needed to fix 
some other 
numerical issues 
in VA  

Next version 
<near 

future> 

o Can we address the 
non-
differentiability of 
higher-order 
current 
derivatives? 

 
Evolution of MVS 
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