
Quantum optics in new systems: from 
plasmonics to cold atoms 

 

Russian Quantum Center 
P.N. Lebedev Institute RAS 

  

Alexey Akimov 



Information Processing 

Information technology:  

• One of the key technology of modern 
society  

• Mostly built using electrical integrated 
circuits based on transistors  

• Relays on Moor’s law  

 

 

Communication: 

• Integrated in all aspect of our life  

• Utilizes light already today 

• Suffers from security issues 

 
 

Intel (Bob Colwell): “Moores Law 
will be Dead by 2020″ 
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Integrated nanophotonics – next 
step in Information processing 

Photons: 
• Have no ohmical losses 
• Have huge carries frequencies 
• IBM already used  photonics for processor 

interconnects 

But…   
  Wide use require new platforms for photon switching and processing 
 
Quantum communication: 
• Offers new security level 
• Exits on market as short range solution 
• Need quantum repeaters for long 

distance 

NEED TO INTEGRATE LIGHT AND MATTER ON QUANTUM LEVEL 



Key element of active nanphotonics: 
interface of one atom and one photon 

 
 Efficient photon reading and writing 

 
 Single photon sources 

 
 Sensors and metrology applications 

 
 Nonlinear optics with single photons 

 
 Many applications in quantum (and classical) information 

processing 



NV- center in diamond 
• Non-zero electronic spin (S=1, |ms|=0,1) 

• Optical readout of the state 

• Optical polarization of the state  

• Microwave control over the spin 

• Long coherence time up to ms 

• Narrow emission line @ 637 nm 

• Individual isolation with laser microscopy  

• Can be created in nanoscale structures  

• Accesses to the nuclear spin  

~300ns 

~40ns 

~13ns 

Readout 

Green 

NV Drive 



Atom-like systems:current efforts 

• Coupling to single photons: diamond nanophotonics  
for quantum networks 

• Sensor and metrology: hig resolution sensing of 
magnetic field 

B. J. M. Hausmann et al (Nano Lett., 2013) Loncar group 

P.Maurer et al (Science, 2012), Lukin group 

• Coupling to single nuclei: multi-second quantum memory in 
isotopically pure diamond 

NV 
tip 

5 mum  

P.Malinetsky et al (Nature Nanotechnology , 2012) Yacoby group  

H. Bernien, et al Nature., (Nature , 2013) Hanson group 
• Heralded entanglement between separated NV centers 



Applications to metrology 

• Measurement of 
electric/magnetic field 

• Temperature sensors 
• Rotation sensors 

 
 

• In Vivo sensors 
• High resolution sensors 
• High sensitivity solid 

state sensors 

G Kucsko et al. Nature 500, 54-58 (2013)  

F. Dolde et al. Nature Physics 7, 459–463 (2011) 

Need spin readout with good signal to noise! 



How to collect photon emitted by an atom? How to absorb one photon with an atom? 

 Single photon - single atom interaction probability:  

cross-section 

transverse localization 
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 This talk : 
  use unusual materials to improve interaction 
 probability:  efficient broadband photon collection  
     using sub wavelength localization     



Surface plasmons in nanowires 
 Surface plasmons: charge-density waves guided on a conducting  
    cylinder + associated  electromagnetic field 

 Two effects for thin (sub-wavelength) wires: 

D.E. Chang, A.S. Sorensen, P.R. Hemmer, and M.D. Lukin, Phys.Rev.Lett. 97, 053002 (2006) 
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Strong coupling with nanowire surface 
plasmons nanowire as  a “super lens” 

 Atom emission guided almost 
completely into the wire, this emission 
should be completely reversible 

 Calculation for realistic system 
(perturbation theory, includes losses) 



Wire – Qdot distance dependence 

• Efficiency: 
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Nature 450, 402-406 



Ways to reduce losses in plasmonic 
based materials 

General idea: to combine properties of metal and 
dielectric at one: 
• Combine plasmon wire  

with waveguide 
• Grow high quality films 
• Double wires geometry 
• Grooves 

 
2012 / Vol. 20, No. 5 / OPTICS EXPRESS 570

Nature Physics 3, 807 - 812 (2007) 

OR… 



Hyperbolic Metamaterial: The idea 
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Hyperbolic Material: the structure 
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New Material for Hyperbolic 
Metamaterial 

Prof. Alexandra 
Boltasseva  

Prof. Vladimir 
Shalaev  

New Plasmonic Material  
titanium nitride (TiN) 

CMOS compatible 

New MetaMaterial  
TiN/Al0.7Sc0.3N 

CMOS compatible 



Hyperbolic CMOS-compatible 
metamaterial 

Al0.7Sc0.3
N 

TiN 2 nm 

• 10/10 nm, 20 layers,  
• [001]-oriented MgO 

substrate  
• epitaxially grown using 

reactive DC magnetron 
sputtering  

• 1st epitaxial single crystalline 
metal/semiconductor 
superlattice 

• CMOS-compatible 
constituent materials G. Naik, et al PNAS (2014) 

M. Y. Shalaginov, et al CLEO Proceedings (2014) 



Coupling of NV centers to HMM 



Optimization of thickness of layers 

G. Naik, et al PNAS (2014) 

 
• Thickness of layers has optima 
• Density of states is limited  

 
 

λ = 720 nm,   
5 to 16 nm separation  
(averaged) 

• technology allow 
thickness even below  
optima 



Experiment: modification of the lifetime 
 

τHMM = (4.8 ±2) ns 

Measured 
Purcell factor ≈ 

4.2 

TiN-AlScN HMM 

τcoverslip ≈ 20 ns 



Collected emission enhancement  

• Emission rate in free space 
is modified due Fresnel 
reflection  

• Theoretical value of 
collected counts 
enhancement is 1.5 

• Some of NV show 4-5 
times more emission… 
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Quality of HMM 

Sample with standard procedure 

• Measured emission 
enhancement is around 5  
 

Sample with new procedure: 
• Measured emission 

enhancement is around 2  

Defects act as a random antenna! 



Conclusions 

• Demonstrated between nanowires and 
quantum dots and NV center 

• Demonstrated coupling of a single-photon source 
to hyperbolic metamaterial. 

• Paved the way towards CMOS compatible 
integrated quantum sources. 

 



Outlook:  
converting high k modes into emission 

• Antenna can help convert HMM 
modes into light 

• Smaller nano diamonds with 
optimal NV concentration 

• Shallow implanted diamond films 
• Integration with the fiber 

 
Tal Galfsky, et al., arXiv: 1404.1535 

8x emission! 



THIS TALK 

EXOTIC COLD ATOMS 
• Towards “simulating”  complex quantum materials 

QUANTUM PLASMONICS AND NANOPHOTONICS 
• Efficient quantum interface between light and spin 



Motivation: understanding 
complicated quantum materials 

Understanding of complex materials is very 
challenging:  
• High temperature superconductivity  

– Exist at some materials up to 138 K 
– Many potential interesting applications 
– No model with prediction power 

• Magnetic materials 
– Frustrated magnets 
– Magnetic phase transitions 

 Approach: Use controllable quantum system to design 
material properties 

27 

Richard Feynman 

• Other application: 
– Understanding nuclear interactions 
– Modeling phonon interactions 

 

Leon Balents, Nature 464, 2010 



Key idea – use of cold atom ensembles 

Markus Greiner and Simon Folling, NATURE, Vol 453 

Atoms in optical 
lattices are similar to 
electrons in solid 
state 

Optical Lattice 

Crystal field 



Редкоземельные элементы 
(группа лнтаноидов) 

24 6nf s



Why lanthanides?  

26s

4 nf

 Optical electrons are f - shell ones 
 Ground state has orbital momentum  
 Ground state has magnetic momentum  
 Many low-field Feshbach resonances 
 Ground state transitions are somewhat shielded by s-shell  

 Strong close to cycling optical transition in visible 
 Narrow “clock” transitions  

Easy to cool 
Allow magnetic dipole-dipole interactions 
May be suitable for quantum simulations  

Thulium 



Tm Vision 
• Feshbach resonance in moderate magnetic field are expected 
• Suitable for cooling down to BEC via optical dipole trap 
• Suitable for magnetic dipole - dipole interactions in green dipole 

trap (up to 100 times stronger, then with alkali atom) 
• Both nuclear spin and electron orbital momentum could be used for 

spin manipulation 
• Single short readout for single side state should be possible for each 

ground state level. 



• Very simple level 
structure 

• 0.5µB  
• 399 nm 1st stage 
• 556 nm 2st stage 
• 532 nm dipole 

trap 
• BEC achieved 
 

 

Cold lanthanides today:  

• Complicated level 
structure 

• 10µB 
• 421 nm 1st stage 
• 721nm 2st stage 
• 1064 nm dipole 

trap 
• BEC achieved 

Dy 66 

10 24  6  f s

 
F. Ferlaino,  Innsbruck University 
PRL 108, 210401 (2012) 

 
  
 

Tm 69 

13 24  6  f s
Yb 70 

14 24  6  f s

Y. Takahashi, Kyoto University 
PRL 98, 030401 (2007) 

• Complicated level 
structure 

• 7µB 
• 401 nm 1st stage 
• 583nm 2st stage 
• 1064/1075 nm 

dipole trap 
• BEC achieved 

 

Er 68 

12 24  6  f s

B.Lev , Stanford University 
PRL 107, 190401 (2011) 

• Simple level 
structure 

• 4µB 
• 410 nm 1st stage 
• 531 nm 2st stage 
• 532 nm dipole trap 
• ?BEC 

 
A. Akimov,  RQC&LPI, 
PRA 108, 210401 (2012) 



Tm working transitions 

74 10−⋅



The setup 

Sukachev et al., Phys. Rev. A, 82, 011405 (2010)  
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MOT Temperature 
Doppler 
cooling 

Sub Doppler 
cooling 

~ 1 Kµ

~ 240 Kµ



Cooling mechanisms in the 
magnetic field 

Phillips et al, J. Opt. Soc. Am. B, 9, 1997 (1992); 
Valentin, et al, EuroPhys. Lett. 17, 133 (1992) 

Doppler cooling Polarization 
Gradient cooling  

PGC normally is detuned from Doppler cooling 
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Magnetic trap 

Magnetic field ON 

ms 

ms 

Magnetic field OFF 

Gradient of magnetic field ~20 G/cm 
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TMagneticTrap = 40 μK 

TMOT = 100 μK 
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Collisions and cyclicity, first results 

• The losses rise with power result from the 
upper level branching decay. 
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• Long Zeeman cooler compatible with Rb is 
possible . 



Cycling transition: second stage 
cooling 

74 10−⋅



Atomic Cloud Temperature 
S0 = 90 
S0 = 60 
S0 = 30 

530,7 < 20 кГц 
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Frequency detuning, γ  

But… Lifetime of atoms in green trap is 2 seconds, residual gas collisions limited 

T below 10 μK reached in the lab with wider beams 



Optical lattice 
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Where we are: 

• Laser cooling and trapping of Thulium at 410 nm 
was demonstrated. 

• “Free” subDoppler cooling down to 25 µK (0.1 
Doppler limit), was demonstrated  

• Magnetic trap was demonstrated 
• Second stage cooling at 530.7nm  is realized down 

to 10 µK 
• Deep dipole trap/lattice at 532 nm was 

demonstrated  



Getting more atoms: new setup 

Current status: 5 106 atoms in blue MOT at 60 μK, γ/2 detuning, 
Strong magnetic trap 
Green MOT is under optimization 

Cooling to quantum degeneracy is coming! 

Work in progress: exploring Feshbach resonances 



Outlook 
• Simulation of exotic magnetic phases due to 

high orbital/magnetic moment  
• Novel optical  clock 
• Simulation of complex dipolar systems 

 
 



Outlook: integration with photonics 
• Combining photonic cavities or plasmonic 

structures with ultaracold atoms 
• Recent progress: Tobias G. Tiecke, Jeff D. 

Thompson, Nature 508, 241-244 
 

• Sub-wavelength optical lattices for cold 
atoms  
• using plasmonic nano-particle  array 

M. Gullans et al Phys. Rev. Lett. 109, 235309 (2012) 

• Single photon nonlinear optics, switches,  
transistors 
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Integrated Quantum Nanophotonics: 
research plans  

• Goal: development of integrated quantum 
nanophotonics using NV centers in diamond. 
– Light spin interfaces at room temperature 

• Metamaterial based 
• Metasurfaces based 

– Sensors of magnetic and electric fields, rotation or temperature 
• High sensitivity sensors using bulk diamond 
• High resolution sensors based on interfaces 



Integrated Quantum Nanophotonics: 
research plans  

• Goal: development of integrated quantum 
nanophotonics using color centers 
– Cavity QED approach 

• Diamond fabrication 
• Plasmonic cavities 
• Exploring novel emitters such as SiV centers  

– Fully integrated circuit, including diamond nanophotonics, fast 
detectors, fiber couplers and electrical interfaces. 
• Quantum photonics based on NV centers 
• Single photon transistors 

 d 



Exotic cold atoms – research plans 
• Goal: Quantum simulations 

– Exploring Feshbach resonances & collisional properties in Tm 
• Search for strong isolated low field resonances 

– Cooling of atomic thulium down to BEC temperatures  
– Simulation of complicated dipolar systems 

• Studying magnetic phases in an optical dipole trap 
• Exploring transport in complex lattices  

– Cold atom based nanophotonics/plasmonics 
• Photonics cavities including “self assembled” cavities  
• Plasmonic structures for cold atoms 

– New applications: compact optical clocks 
 
 



Thank you for your attention! 
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