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Size effects are well understood 
in single crystals 



Outline 

• Phase field dislocation dynamics. 

• Incorporating the stacking fault energy 
in dislocation dynamics 

• Effect of stacking fault energy 

• Size effects 

• Strain rate effects 

 

 

 



Phase field dislocation model 
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Phase field dislocation dynamics 
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Stacking fault energy 



Stacking fault energy 
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Grain structure 



    surface effects: dislocation structures 
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Grain size 
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Strain rate sensitivity 



Dislocation evolution: strain rate 









Dislocation evolution 
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Effect of strain rate on dislocation density 

Brandl et al. Philos. Mag. (2009) 
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Dislocation evolution 









Nucleation rate 



Transition State Theory 
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The nucleation rate is: 
 

The first nucleation probability distribution is  

flow at 2% 

first nucleation event 
Ni 40 nm* 

*(Schwaiger et al., 2003) values are multiplied by 0.1 and 0.4 to obtain the CRSS 



Summary 
 

• We study effects of microstructure and strain rate on the 
deformation mechanisms of nanocrystalline Ni. 

• Predictions: 
– Hall-Petch effect 
– Inverse Hall-Petch effect depends on the GB energy. 
– Stacking fault width and density of partial dislocation depend on USF and 

ISF. 
– Strain rate plays an important role on deformation mechanisms: high 

strain rate increases density of partial dislocations and delays the onset of 
nucleation. 

– TST can be used to obtain flow rules at strain rates 100/sec to 105/sec 
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Experimental data 

Data collected from experimental literature showing 
volumetric versus deviatoric stress at failure  
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Damage in amorphous polymers 
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Phase field description of damage 

Griffith’s theory 

With a damage phase field 
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Phase field description of damage 
Solve structural problem coupled to an equation for the damage, d 

With  

Loss of stiffness in tension only 

Loss of stiffness in shear 

(a) l0=200nm, (b) l0=45nm  



Calibration with MD simulations 

MD dashed lines (Jaramillo et al. 2012), Phase field solid lines (Xie et al, 2014) 
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Failure in composites 

Predicted damage field for (a) perfectly bonded matrix/fiber interface and 
(b) damaged matrix/fiber interface.  



Failure  simulations in composites 



Failure  simulations in composites 



Yield criteria in composite materials 
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Crazing in hole specimen 
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Yield criteria 
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Numerical Results 
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Yield condition 
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