

A typical medium approach to Anderson localization in correlated systems.

N.S.Vidhyadhiraja
Theoretical Sciences Unit
Jawaharlal Nehru center for
Advanced Scientific Research
Bangalore, India

Outline

- Models for strongly correlated electron systems
- Review of DMFT and cluster approaches
- Anderson localization
- Extending DMFT: Typical medium theory
- Disordered Hubbard model Do interactions and disorder co-operate or compete?
- Extending DCA: Typical medium DCA
- Benchmarks
- Metal-Insulator-Transition in a Weakly interacting Disordered Electron System

Minimal Models

Hubbard model

$$\hat{H} = -\sum_{\langle ij \rangle, \sigma} t_{ij} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.}) + \epsilon_d \sum_{i\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Periodic Anderson Model

$$\begin{split} \hat{H} &= \epsilon_{c} \sum_{i,\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} - t \sum_{(i,j),\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + V \sum_{i,\sigma} (f_{i\sigma}^{\dagger} c_{i\sigma} + \text{H.c.}) \\ &+ \sum_{i,\sigma} \left(\epsilon_{f} + \frac{U}{2} f_{i-\sigma}^{\dagger} f_{i-\sigma} \right) f_{i\sigma}^{\dagger} f_{i\sigma}. \end{split}$$

Dynamical mean field theory

Mean field theory for quantum many body systems on a lattice. Maps lattice models to self-consistent impurity models Self energy and Vertex function become <u>purely local and momentum independent.</u> Ignores spatial fluctuations but accounts for quantum local temporal fluctuations. Exact in the limit of infinite dimensions.

Beyond DMFT: Cluster approaches

Periodic Lattice Effective Medium QMC

Cluster-DMFT

Nc=4 Real space

Dynamical Cluster Approximation

Nc=4 Momentum space

H.Fotso et al, Chapter in Strongly Correlated Systems, Springer (2012).

T. Maier et al, Rev. Mod. Phys 77 1027 (2005).

Momentum space clusters

- Dynamical Cluster approximation
- In an exact theory, the Laue function expressing momentum conservation would be $\Delta(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3,\mathbf{k}_4) = \sum \exp\left[i\mathbf{r}\cdot(\mathbf{k}_1+\mathbf{k}_2-\mathbf{k}_3-\mathbf{k}_4)\right]$

$$= N\delta_{\mathbf{k}_1+\mathbf{k}_2,\mathbf{k}_3+\mathbf{k}_4},$$

2

- In the limit of infinite dimensions, $\Delta_{D\to\infty}(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3,\mathbf{k}_4)=1+\mathcal{O}(1/D).$ hence momentum conservation can be ignored.
- In the dynamical cluster approximation, the Laue function may be expressed as $\Delta_{\rm DCA}({\bf k}_1,{\bf k}_2,{\bf k}_3,{\bf k}_4)=N_{\rm c}\delta_{{\bf M}({\bf k}_1)+{\bf M}({\bf k}_2),{\bf M}({\bf k}_3)+{\bf M}({\bf k}_4)}$
- M(k): mapping of k to the cluster momentum K
- The Green's function is given by

$$G(\mathbf{k}, z) = \frac{1}{z - (\epsilon_{\mathbf{k}} - \mu) - \bar{\Sigma}(\mathbf{M}(\mathbf{k}), z)}$$

Comparison of DMFT and Cluster approaches

Do we incorporate?	DMFT	DCA
Strong interaction physics	✓	✓
Multiple orbitals effects	1	✓
Real material aspects	✓	✓
Non-local dynamical fluctuations	X	✓
Low dimensional physics	X	✓
Symmetry broken phases with complex order parameters	X	✓
True phase transitions (i.e avoid spurious ones)	X	✓
Anderson Localization	X	X

What is Anderson localization (AL) and how do we investigate AL theoretically?

1958 – Absence of diffusion in certain random lattices – Physical Review **109** 1492-1505.

Ed. E. Abrahams, (2010).

$$\hat{H}_{A} \equiv \hat{H}_{dis} + \hat{H}_{kin} = \sum_{i\sigma} \varepsilon_{i} c_{i\sigma}^{\dagger} c_{i\sigma} - t \sum_{\langle i,j \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma}.$$

Conclusion: Disorder induced metal-insulator transition

Coherent backscattering: Time reversed paths interfere constructively leading to finite return probability => Localization.

Kramer, B. and MacKinnon, A. Localization: theory and experiment. Rep. Prog. Phys. 56, 1469–1564 (1993)

- Gapless spectrum with localized states at the chemical potential
- Anderson insulator is distinct from band or Mott insulators which are either due to band-fillingor interaction-induced and have a gapped spectrum.
- Systems Heavily doped semiconductors Si:P, a-Si, quantum Hall systems

Extended state with mean free path ℓ

Localized state with localization length &

Localized state wavefunctions have a complex spatial structure and exhibit multifractility

$$P_q = \int d^d r |\psi({f r})|^{2{f q}}$$
 Inverse participation ratio

$$\langle P_q
angle \sim egin{cases} L^0 & ext{Insulator} \ L^{- au_q} & ext{Critical} & au_q = d(q-1) + \Delta_q \equiv D_q(q-1) \ L^{-d}(q-1) & ext{Metal} \end{cases}$$

Local density of states

Local DoS

Anderson localization - multifractility

APS-IUSSTF lectures at Purdue - 2015

Anderson localization - multifractility

Richardella et al, Science

Theoretical approaches

- Exact Diagonalization
- Kernel Polynomial Expansion
- Transfer matrix method

Need large lattices for any reasonable accuracy Almost impossible to incorporate interaction

 Scaling and RG based methods: Perturbative and weak disorder

Extending DMFT: Typical medium theory

Initial Hybridization

Given a hybridization function; Solve N impurity problems - e;

 $\{G_{ii}(w)\}$

Get a new typical medium hybridization
$$G_{typ}\left(\omega\right) = \frac{1}{\omega + \mu - \Delta_{typ}\left(\omega\right) - \Sigma_{TMT}\left(\omega\right)}$$

Obtain a typical medium self-energy

$$G_{typ}\left(\omega\right) = \frac{1}{N_s} \sum_{\mathbf{k}} \frac{1}{\omega - \varepsilon_{\mathbf{k}} + \mu - \Sigma_{TMT}\left(\omega\right)}$$

Construct a Typical Green's function

$$\rho_{typ}(\omega) = \exp\left[\int d\varepsilon_j P(\varepsilon_j) \ln \rho_j(\omega)\right].$$

$$G_{typ}(\omega) = \int_{-\infty}^{\infty} d\omega' \frac{\rho_{typ}(\omega')}{\omega - \omega'}.$$

E. Miranda, V. Dobrosavljevic in *Conductor Insulator Quantum Phase Transitions*, Oxford Univ Press (2013).

Anderson-Hubbard model

Interactions+Disorder:

Co-operation or Competition

Fixed interactions: Disorder decreases Metallicity.

Fixed disorder: Interactions screen disorder Initially; Larger U leads to MIT.

Extending TMT to clusters

Typical medium dynamical cluster approximation

K-dependent typical density of states

$$\rho_{typ}^{c}(K,\omega) = \exp\left(\frac{1}{N_{c}} \sum_{i=1}^{N_{c}} \left\langle \ln \rho_{i}^{c}(\omega, V) \right\rangle \right) \underbrace{\left(\frac{\rho^{c}(K,\omega, V)}{\frac{1}{N_{c}} \sum_{i} \rho_{i}^{c}(\omega, V)}\right)}_{\text{nonlocal}}.$$

K-dependent coarse-grained Green's function

$$\overline{G}(K,\omega) = \int \frac{N_0^c(K,\epsilon)d\epsilon}{\left[G_{typ}^c(K,\omega)\right]^{-1} + \Gamma(K,\omega) - \epsilon + \overline{\epsilon}(K) + \mu}$$

Implies a K-dependent hybridization function $\Gamma(K,\omega)$.

Benchmarks for 1D and 2D

Benchmark for 3D

Nc=1 corresponds to TMT

- Does not get the re-entrance of mobility edge
- Critical disorder underestimated
- Exponent=1

• TMDCA (3D)

- Rentrant mobility edge
- Critical disorder ~ 2.1
- Exponent ~ 1.67
- •Rapid convergence with Nc.

TMDCA – Density of states (U=0)

ADOS: Arithmetically averaged DoS TDOS: Typical average of DoS

Mobility edge

Rentrance behaviour

Weak Interactions + Strong disorder in 3D

Mobility edge survives in the presence of interactions.

C.Ekuma et al ArXiv: 1503.00025

Interactions+Disorder in 3D

Pseudogap at intermediate disorder (W ~ W_c).

C.Ekuma et al ArXiv: 1503.00025

Thank you

TMDCA work in collaboration with Mark Jarrell, Juana Moreno, Chinedu Ekuma, Hanna Terletska, Shuxiang Yang and Ka-Ming.