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Developed at: Purdue University 
Deployed: 1995 
Retired: April, 2007 
Usage: 4600 users, 395,000 simulations 

Prof. Vasileska became affiliated to PUNCH as part of 
a NSF sponsored DESCARTES project in 1998: 
 
• SCHRED MOS Capacitor Tool: installed on PUNCH 1998 (Dragica Vasileska) 
• SCHRED Dual-Gate Capacitor Tool: installed on PUNCH 1999 (Dragica Vasileska 

and Zhibin Ren) 





Item Value 
Contributions: 372 
Total Simulation Users Served: 22,144 
Rank by Contributions: 3 / 1588 
First Contribution: 09 Mar 2005 
Last Contribution: 17 Feb 2015 
Citations on Contributions: 136 
Usage in Courses/Classrooms: 7,516 users served in 480 courses 

from 47 institutions 
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New paradigms of learning are necessary for training students in the vibrant 

and constantly changing field of nanoelectronics.  
 

Prof. Vasileska and Prof. Klimeck propose a novel 
methodology: Tool-Based Curricula. 

 

Tool-Based Curricula consists of assembling a set of computational 
simulation tools with: 

 demos on how to use the tools,  
 the objectives of the tool and what can be learned with them,  
 assembly of solved problems,  
 homework assignments,  
 challenge problems which are related to real world applications. 







 Bacarani and Worderman ⇒ transconductance degradation (Proceedings of the 
IEDM, pp. 278-281, 1982) 

 Hartstein and Albert ⇒ estimate of the inversion layer thickness (Phys. Rev. B, 
Vol. 38, pp.1235-1240, 1988) 

 van Dort et al. ⇒ analytical model for Vth which accounts for QM effects (IEEE 
TED, Vol. 39, pp. 932-938, 1992) 

 Takagi and Toriumi ⇒ physical origins of Cinv (IEEE TED, Vol. 42, pp. 2125-2130, 
1995) 

 Hareland et al. ⇒ modeling of the QM effects in the channel  (IEEE TED, Vol. 43, 
pp. 90-96, 1996) 

 Krisch et al. ⇒ poly-gate capacitance attenuation  (IEEE EDL, Vol. 17, pp. 521-
524, 1996) 

 Vasileska, Schroder and Ferry ⇒ influence of many-body effects on Cinv (IEEE 
TED, Vol. 44, pp. 584-587, 1997) 
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• 1D Poisson equation:

• 1D Schrödinger equation: 
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• Electron density: 
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Exchange-Correlation Correction:

ï Lower subband energies
ï Increase in the subband separation
ï Increase in the carrier concentration at 

which the Fermi level crosses into the 
second subband

ï Contracted wavefunctions

Vasileska et al., J. Vac. Sci. Technol. B 13, 1841 (1995)
(Na=2.8x1015 cm-3, Ns=4x1012 cm-2, T=0 K)

Thick (thin) lines correspond to the
case when the exchange-correlation
corrections are included (omitted) in
the simulations.
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Total Ground State
Energy of the System

Hartree-Fock Approximation
for the Ground State Energy

Accounts for the error made
with the Hartree-Fock Approximation

Accounts for the reduction
of the Ground State Enery
due to the inclusion of the
Pauli Exclusion Principle
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COMPUTEL 

0

5 x019

1x1020

1.5x1020

2x1020

0 5 10 15 20 25 30 35 40

n(
z)

  [
cm

-3
]

Distance from the SiO
2
/Si interface  [Å]

QM

V
G
= 2.5  V

SC 0

5

10

15

20

25

1011 1012 1013

QM
SC

z av
  [

Å
]

N
s
  [cm-2]

Cinv reduces Ctot by about 10%  

Cpoly+ Cinv reduce Ctot by about 20%  

With poly-depletion Ctot has pronoun-
ced gate-voltage dependence 
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charge density peaks at a finite distance 
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to larger average displacement of 
electrons from that interface. 
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It is evident that many years of research by a great many people, both before and after the 
discovery of the transistor effect, has been required to bring our knowledge of 
semiconductors to its present development. We were fortunate to be involved at a 
particularly opportune time and to add another small step in the control of Nature for the 
benefit of mankind. 

 
- John Bardeen, 1956 Nobel lecture 







 



 Quantum correction methods 
▪ Drift-diffusion + hydrodynamic models 
▪ Analytical corrections 
 Hansch method 
 Van Dort method 

▪ Numerical approaches 
 Density gradient method 

▪ Particle-based device simulators 
▪ Effective Potential Approach in Conjunction With Particle-Based 

Approaches 

 Solution of the Schrodinger-Transport-Poisson 
Problem 
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In principle, the effective role of the potential can be rewritten in terms of the 
non-local density as (Ferry et al.1):

Classical density
Smoothed,
effective potential

Built-in potential
for triangular po-
tential approxima-
tion.

Effective potential 
approximation

Quantization 
energy

“Set back” of charge --
quantum capacitance 
effects

Built-in potential
for triangular po-
tential approxima-
tion.

Effective potential 
approximation

Quantization 
energy

“Set back” of charge --
quantum capacitance 
effects

1 D. K. Ferry, Superlatt. Microstruc. 27, 59 (2000); VLSI 
Design, in press.
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 Does not calculate the subband structure 
  
 Does not calculate the 1D/2D density of 

states in nanowires/inversion layers 
  
  Scattering is not treated  accurately 





Intel’s next technology node is a 14 nm FinFET. 



D. Mamaluy, H. R. Khan, D. Vasileska 
Properties of a GOOD 
Device simulator 

DG vs. Tri-Gate 

H. R. Khan, D. Mamaluy and D. Vasileska, “Quantum transport 
simulation of experimentally fabricated nano-FinFET”, IEEE 
Trans. Electron Devices, Vol. 54 (4), pp. 784-796 (2007). 
 
H. R. Khan, D. Mamaluy and D. Vasileska, “Approaching 
Optimal Characteristics of 10 nm High Performance Devices” a 
Quantum Transport Simulation Study of Si FinFET, IEEE Trans. 
Electron Devices, Vol. 55(1), pp. 743-753 (2008). 
 



D. Mamaluy, H. R. Khan, D. Vasileska 

DG vs. Tri-Gate: 

H. R. Khan, D. Mamaluy and D. Vasileska, IEEE Transactions Electron Dev. Vol.  55(8), pp. 2134 – 2141, August 2008. 





A. Di Carlo, private communication. 



A. Di Carlo, private communication. 



A. Di Carlo, private communication. 



A. Di Carlo, Private Communication. 



NEMO5 is the fifth edition of the NanoElectronics MOdeling Tools of the iNEMO group. 
It incorporates the core concepts and insights gained from 15 years of development of 
NEMO-1D, NEMO-3D, NEMO-3D-Peta and OMEN. 
 
The core capabilities of NEMO5 lie in the atomic-resolution calculation of 
nanostructure properties: 
 strain relaxation, phonon modes, electronic structure using the tight-
binding model, self-consistent  Schroedinger-Poisson calculations, and quantum 
transport. 



Martin Fuechsle,  Jill A. Miwa,  Suddhasatta Mahapatra,  Hoon Ryu,  Sunhee Lee,  Oliver Warschkow,  Lloyd C. L. Hollenberg,  Gerhard Klimeck 
& Michelle Y. Simmons, Nature Nanotechnology 7,  242–246   (2012)  doi:10.1038/nnano.2012.21 

http://www.nature.com/nnano/journal/v7/n4/fig_tab/nnano.2012.21_F1.html
http://www.nature.com/nnano/journal/v7/n4/fig_tab/nnano.2012.21_F1.html
http://www.nature.com/nnano/journal/v7/n4/fig_tab/nnano.2012.21_F1.html
http://www.nature.com/nnano/journal/v7/n4/fig_tab/nnano.2012.21_F1.html
http://www.nature.com/nnano/journal/v7/n4/fig_tab/nnano.2012.21_F1.html
http://www.nature.com/nnano/journal/v7/n4/fig_tab/nnano.2012.21_F1.html
http://www.nature.com/nnano/journal/v7/n4/fig_tab/nnano.2012.21_F1.html
http://www.nature.com/nnano/journal/v7/n4/fig_tab/nnano.2012.21_F1.html
http://www.nature.com/nnano/journal/v7/n4/fig_tab/nnano.2012.21_F1.html


A One Person’s View 





NEEDS  Node 



Random Dopants 
PAST PRESENT 







K. Raleva, D. Vasileska, S. M. Goodnick and M. Nedjalkov, Modeling Thermal Effects in Nanodevices, IEEE Transactions on 
Electron Devices, vol. 55, issue 6, pp. 1306-1316, June 2008 
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One picture is worth a million words! 

Over 300,000 users annually!!! 
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