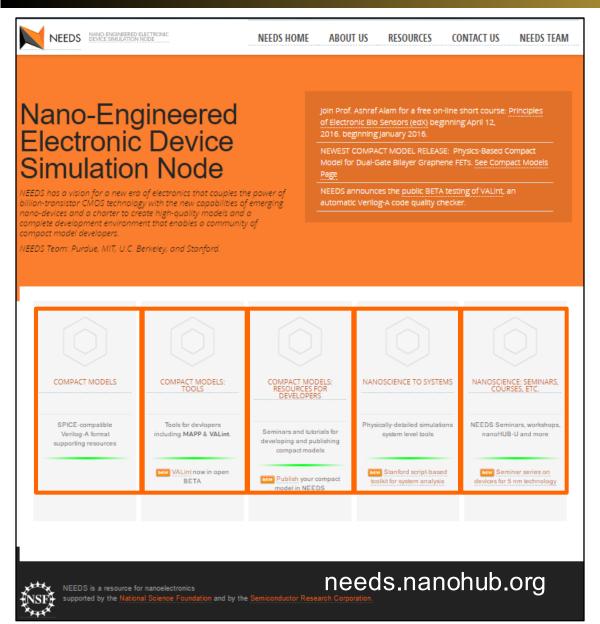
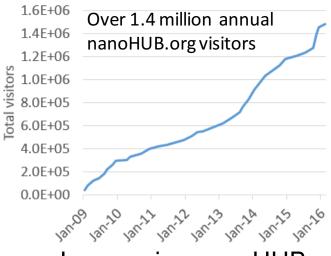
May 18, 2016

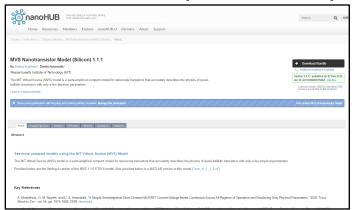
needs.nanohub.org The NEEDS online gateway

Berkeley, MIT, Purdue, Stanford


Xufeng Wang Purdue University



NEEDS.nanohub.org


NEEDS > 35,000 users

Publishing compact model with NEEDS

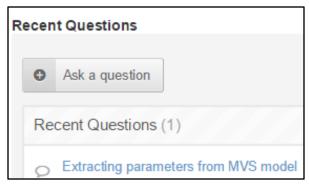
Description	Content		
Title	Source code		
Version	Circuit simulation benchmark		
Synopsis	Parameter sets/extractor		
Abstract	Manual		
References	Other files		
NEEDS Modified CMC License			
Authors			
Tags			

Individual compact model page

NEEDS list of compact models

Name	Created	Latest revision	• From •
A Verilog-A Compact Model for Negative Capacitance FET	2015-11-29	2015-11-29	Purdue University
The NC-FET compact model is a semi-physical verilog-A model of the negative capacitance transistor. We developed this self-consistent model with BSIM4/MVS and Landau theory.			
Ambipolar Virtual Source Compact Model for Graphene FETs	2014-10-22	2014-10-22	MIT
This is a compact physics-based ambipolar-virtual-source (AVS) model that describes carrier transport in both unipolar and ambipolar regimes in quasi-ballistic graphene field-effect transistors (GFETs).			
Berkeley VCSEL Compact Model	2015-5-28	2015-5-28	UC Berkeley
The U.C. Berkeley Vertical Cavity Surface Emiting Laser (VCSEL) Compact Model provides a circuit simulator compatible Verilog-A model of VCSEL lasers, primarily for use in designing direct-modulation driver circuits for optical interconnects.			
CCAM Compact Carbon Nanotube Field-Effect Transistor Model	2015-6-15	2015-10-6	Technische Universitat
CCAM is a semi-physical carbon nanotube field-effect transistor model applicable for digital, analog and high frequency applications.			Dresden, UCSD
Compact model for Perpendicular Magnetic Anisotropy Magnetic Tunnel Junction		2015-11-09	Institut Mines-
This STT PMA MTJ model integrates the physical models of static, dynamic behaviors and reliability issues, which can be used to perform more accurate and complex reliability analysis of complex hybrid circuits before fabrication.			Téléecom, et. al.
FET pH Sensor Model	2014-11-3	2014-11-3	Purdue
The FET pH sensor model is a surface potential compact model for FET based pH sensors that accurately describes the physics of electrolyte and surface charges that respond to pH.			
III-V Tunnel FET Model	2014-10-22	2015-4-20	Penn State University
The III-V Turnel FET Model is a look-up table based model, where the device current and capacitance characteristics are obtained from calibrated TCAD Sentaurus simulation.			
mCell Medal	2014-10-22	2015-1-19	Carnegie

Publishing compact model with NEEDS


Version control and access

Version Released DOI Handle Status 1.1.1 Dec 02, 2015 10.4231/D3RR1PN6M published	
1.1.1 Dec 02, 2015 10.4231/D3RR1PN6M published	
	view version »
1.1.0 Aug 01, 2015 10.4231/D3QZ22J40 published	view version »
1.0.1 Oct 23, 2014 10.4231/D3H12V82S published	view version »

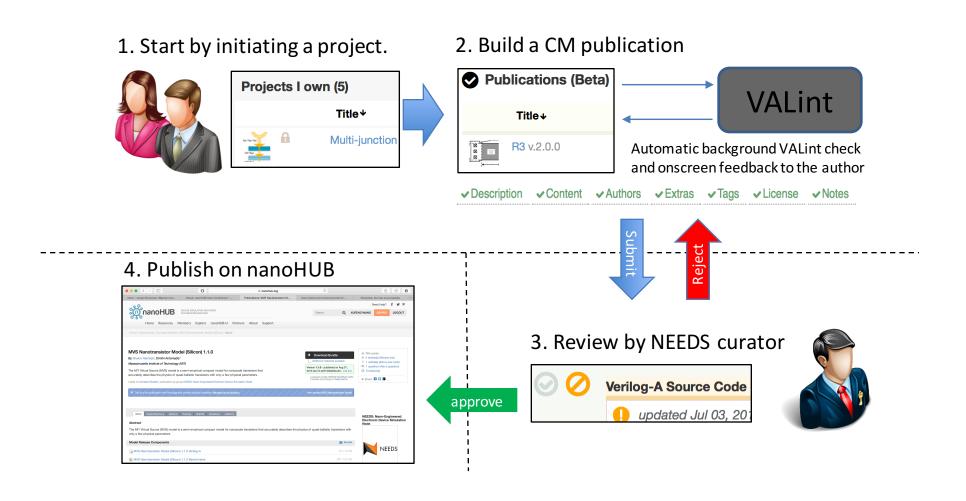
Wishlist

Questions

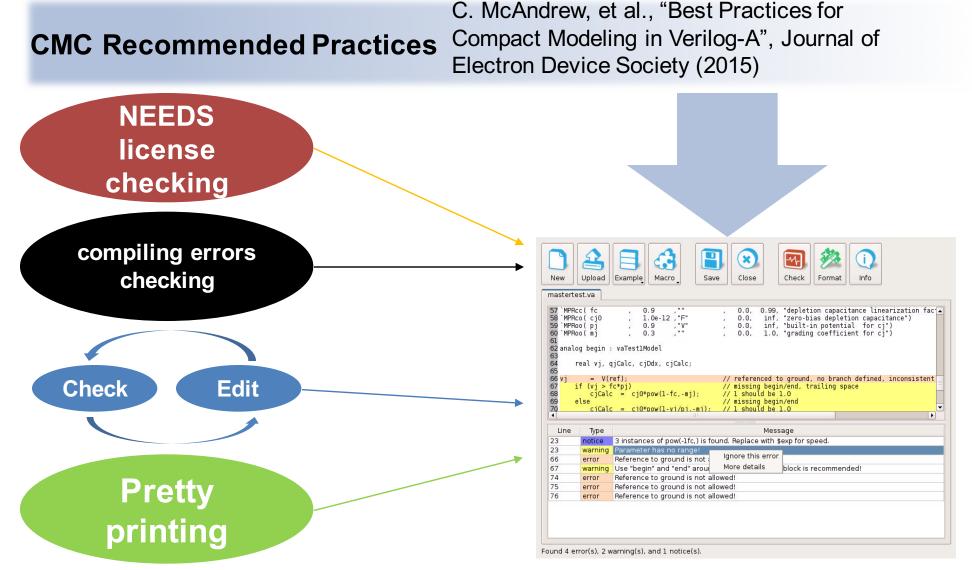
Citations

Update tracking

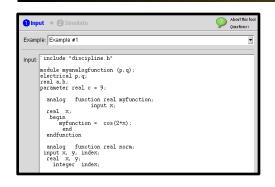
Double-Clamped Silicon NEMS Resonators Model


This model is built for a silicon-based, double-clamped (sou capacitive modulation with the two gates, piezoresistive mo

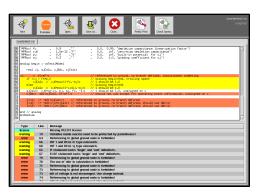
Subscribe to this compact model update/news


Upcoming features:

- Bug report
- Detailed user usage


Compact model publication platform

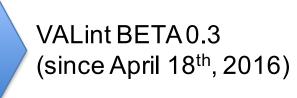
VALint



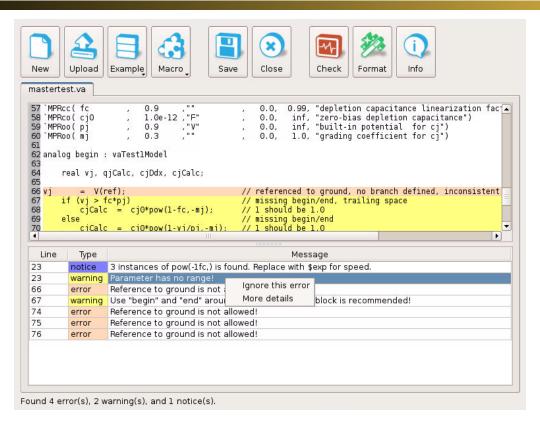
VALint development

Prototype: VAChecker 0.1 (late 2014)

- Based on ADMS
- Check for single Verilog-A file only.
- Simple text based output



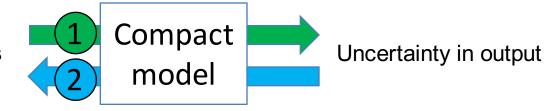
VALint BETA 0.2 (since Sep. 1st, 2015)


- Support models with multiple Verilog-A files.
- Text editor interface with VALint integrated.
- To be an integrated part of NEEDS publication curation.

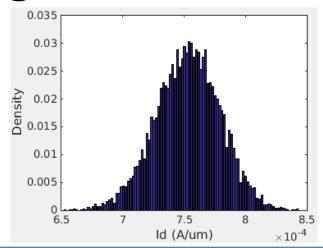
Feedback:

- Unable to upload proprietary compact models to nanoHUB
- Difficult to install because ADMS depend on legacy software
- Many missing rules/recommended practices that are not supported by ADMS

VALint development

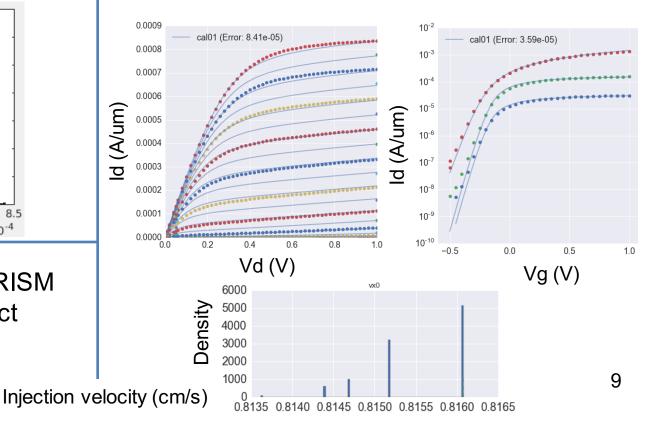

VALint BETA 0.3 (since April 18th, 2016)

- Complete rewrite based on
 - VAPP engine developed by Berkeley team
 - Qt based interface
- Octave compatible.
- Addressed many issues reported in version 0.2


https://nanohub.org/tools/vachecker

Uncertainty quantification with compact models

Uncertainty in parameters



1 Uncertainty propagation

Adapting UQ developed by PRISM program at Purdue for compact models

Summary

- VALint
 - Industrial strength models
 - Cross platform installation scripts
- Model exerciser
 - MAPP
- Uncertainty quantification
- Model deployment and curation